(3.238.98.214) 您好!臺灣時間:2021/05/08 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:賴姮樺
研究生(外文):Heng-Hua Lai
論文名稱:RuO2-Ta2O5-C複合電極之製備—燒結反應機制及蒸氣處理對改進儲電性能之研究
論文名稱(外文):Preparation of RuO2-Ta2O5-C composite electrodes for supercapacitors—kinetics of annealing reaction and effects of steam treatment
指導教授:卓錦江卓錦江引用關係
指導教授(外文):Jiin-Jiang Jow
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:122
中文關鍵詞:釕氧化物燒結蒸氣處理超高電容器
外文關鍵詞:Ruthenium oxideAnnealingSteam treatmentSupercapacitor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:370
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本研究以浸鍍法製備 RuO2-Ta2O5/Ti 與 RuO2-Ta2O5-C/Ti 超高電容器複合電極,利用鉭的高黏著性及安定性,增加釕電極的穩定性;並有系統地探討燒結條件對複合電極儲電特性之影響。此外,並以高壓蒸氣處理燒結後 RuO2-Ta2O5/Ti 複合電極,增加其氧氣及氫氣生成之過電位,進一步改善電極儲電的操作電位窗範圍,藉由掃描式電子顯微鏡 (SEM)、X-ray 光繞射儀 (XRD) 和 X-ray光電子能譜儀 (XPS) 等,分析探討 RuO2-Ta2O5/Ti 與 RuO2-Ta2O5-C/Ti 複合電極的表面結構、表面元素鍵結和結晶性等。
研究結果顯示,RuO2-Ta2O5/Ti 複合電極在 220、230、240、250 和 300℃ 下燒結,需經約 12、9、7、5 和 1 小時,可使複合電極形成穩定之化合物,具一穩定的電容值,其燒結反應之活化能為 73.5 kJ/mol。電極在 220-250℃ 下燒結,獲得比電容值皆約 170 F/gRuO2,然而在 300℃ 下燒結的比電容量則降至 130 F/gRuO2。另外,分別添加 XC-72 與 R660 奈米碳材之 RuO2-Ta2O5-C/Ti 複合電極,在 220、230、240、250 和 300 ℃ 下燒結,則分別需約 6、5、4、3 和 1 小時,與 7、6、5、4和 1 小時,可形成穩定的化合物,具一穩定的電容值。添加碳材 XC-72 之複合電極,燒結溫度從 220 增加至 300℃ 下燒結,其電容量則從 344 下降至 233 F/gRuO2;另一方面,添加碳材 R660 之複合電極,燒結溫度從 220 增加至 300℃ 下燒結,其電容量則從 384 下降至 269 F/gRuO2。添加碳材 XC-72 與 R660 的RuO2-Ta2O5/Ti複合電極燒結反應之活化能分別約為 54.6 與 61.7 kJ/mol。顯示添加奈米碳材的複合電極之燒結活化能較小,因此添加碳材對 RuO2-Ta2O5/Ti 複合電極有促進燒結反應之作用。
RuO2-Ta2O5/Ti 複合電極經蒸氣再處理後,其氧氣和氫氣生成過電位,隨著蒸氣再處理溫度增加而增加,而電極在 250℃ 下進行蒸氣再處理,其電極操作電位窗可增加至 130 mV左右,亦即電極經蒸氣再處理後,可抑制電極上氧氣和氫氣的生成,達到增加電極操作電位窗範圍之目的。此外,電極極化曲線分析結果亦顯示,電極經蒸氣再處理與未經蒸氣再處理,其陽極生成氧氣與陰極生成氫氣之塔弗斜率皆沒明顯的變化,但交換電流則隨著蒸氣再理溫度增加而降低。另一方面,在 230℃ 下燒結 9 小時之 RuO2-Ta2O5/Ti 複合電極,其電容值為 194 F/g RuO2,然而經 180與250℃ 蒸氣再處理,其電容量從下降至185 與139 F/g RuO2。這說明蒸氣再處理降低表面活性位置。XPS 分析結果顯示,電極經蒸氣再處理於不同溫度下,其 Ru-O-Ru 鍵結所佔面積比例皆下降;而 Ru-OH 和 H-O-H 鍵結所佔面積比例皆增加。
Preparations of RuO2-Ta2O5/Ti and RuO2-Ta2O5-C/Ti composite electrodes for supercapacitor by impregnation method were studied in this work. The influence of annealing condition and stream treatment for increasing the potential window of the electrodes were investigated systematically. The properties of the composite electrodes were examined by scanning electron microscope (SEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopic (XPS).
The results show that the annealing time for obtaining stable composite electrodes of RuO2-Ta2O5/Ti at 220, 230, 240, 250 and 300℃ is 12, 9,7, 5 and 1 hr, respectively. The activation energy of the annealing reaction is ca. 72.6 kJ/mol. The specific capacitance of RuO2-Ta2O5/Ti composite electrodes annealed at 220-250℃ is ca. 170 F/gRuO2 while those annealed at 300℃ is ca. 130 F/gRuO2.
On the other hand, the annealing time for obtaining stable composite electrodes of RuO2-Ta2O5-C/Ti (C: XC-72 ) at 220, 230, 240, 250 and 300℃ is 6, 5, 4, 3 and 1 hr, respectively, and that for RuO2-Ta2O5-C/Ti (C: R660) at the same annealing conditions is ca. 7, 6, 5, 4 and 1 hr, respectively. The specific capacitance of RuO2-Ta2O5-C/Ti composites decreases with the increase of the annealing temperature, those containing XC-72 and R660 annealed at 220℃ is 344 and 384 F/gRuO2, and decreases to 233 and 269 F/gRuO2 at 300℃, respectively. The activation energy obtained accordingly for the RuO2-Ta2O5-C/Ti composite electrodes containing XC-72 and R660 is ca. 55.0 and 61.7 kJ/mol, respectively. The results indicate the addition of carbon in the RuO2-Ta2O5/Ti electrodes increases the specific capacity of RuO2 significantly and decreases the activation energy of the annealing reaction, i.e. improve the annealing of the RuO2-Ta2O5 composite materials.
With respect to the stream treatment of the RuO2-Ta2O5/Ti electrodes, the oxygen evolution and hydrogen evolution over-potential on the electrodes in aqueous 0.5 M sulfuric acid solution is increased significantly by steam treatment. The potential window of the electrodes increases ca. 100 and 130 mV after steam treatment at 240 and 250℃ for 5 hours, respectively. However, the steam treatment decreases the active surface area of the RuO2-Ta2O5/Ti composite electrodes. As a results, the specific capacitance of RuO2-Ta2O5/Ti composite electrodes annealed at 230℃ for 9 hours decreases from 194 F/gRuO2 to 185 and 139 F/gRuO2 after retreated with steam at 180 and 250℃ for 5 hours, respectively. The exchange current of the oxygen and hydrogen evolution also decrease after steam treatment while the Tafel slope remains unchanged. The XPS analysis of RuO2-Ta2O5/Ti composite electrodes shows that bond ratios of Ru-OH and H-OH decreases and that of Ru-O-Ru decreases after steam treatment.
中文摘要-------------------------------------------------------------i
英文摘要-----------------------------------------------------------iii
總目錄---------------------------------------------------------------v
表目錄------------------------------------------------------------viii
圖目錄--------------------------------------------------------------ix
第一章 緒論-----------------------------------------------------------1
1-1 前言-----------------------------------------------------------1
1-2 超高電容器之沿革------------------------------------------------2
第二章 基礎理論與文獻回顧----------------------------------------------4
2-1 超高電容器之簡介------------------------------------------------4
2-2 超高電容器之儲電原理---------------------------------------------8
2-3 超高電容器之電極材料--------------------------------------------11
2-3-1 碳系電極材料-----------------------------------------------11
2-3-2 導電性高分子材料. -----------------------------------------12
2-3-3 金屬氧化物材料---------------------------------------------13
2-4 金屬氧化物電極的製備方法及儲電性能--------------------------------16
2-4-1 製備方法--------------------------------------------------16
2-4-2 不同製備方法與其儲電特性------------------------------------18
2-4-3 水熱處理--------------------------------------------------23
2-5 影響超高電容器電極之因素----------------------------------------24
2-6 研究動機------------------------------------------------------31
第三章 實驗方法與儀器-------------------------------------------------32
3-1 浸鍍法製備 RuO2-Ta2O5/Ti 複合電極-------------------------------32
3-1-1 鈦基材之前處理---------------------------------------------32
3-1-2 鍍浴組成--------------------------------------------------32
3-1-3 RuO2-Ta2O5/Ti 複合電極之製備-------------------------------32
3-1-4 蒸氣再處理燒結後 RuO2-Ta2O5/Ti 複合電極---------------------32
3-2浸鍍法製備 RuO2-Ta2O5-C/Ti 複合電極------------------------------33
3-2-1 鍍浴組成--------------------------------------------------33
3-2-2 RuO2-Ta2O5-C/Ti 複合電極之製備-----------------------------33
3-3 電化學性質之測試-----------------------------------------------34
3-3-1 循環伏安法-------------------------------------------------34
3-3-2 線性掃描伏安法---------------------------------------------34
3-4 實驗儀器------------------------------------------------------35
3-4-1 電化學分析儀器---------------------------------------------35
3-4-2 實驗分析儀器-----------------------------------------------35
3-4-3 其它儀器--------------------------------------------------36
3-4-4 實驗藥品與材料---------------------------------------------36
第四章 結果與討論----------------------------------------------------42
4-1 RuO2-Ta2O5/Ti 複合電極燒結反應之探討----------------------------42
4-1-1 燒結溫度與時間對 RuO2-Ta2O5/Ti 複合電極之儲電性能影響---------42
4-1-2 RuO2-Ta2O5/Ti 複合電極燒結反應之速率及活化能探討--------------47
4-1-3 RuO2-Ta2O5/Ti 複合電極之表面結構分析------------------------51
4-2 RuO2-Ta2O5-C/Ti 複合電極燒結反應之探討--------------------------56
4-2-1 燒結溫度與時間對 RuO2-Ta2O5-C/Ti 電極之儲電性能影響-----------56
4-2-2 RuO2-Ta2O5-C/Ti 複合電極燒結反應之速率及活化能探討 -----------64
4-2-3 RuO2-Ta2O5-C/Ti 複合電極之表面結構分析----------------------70
4-3 利用蒸氣再處理增加 RuO2-Ta2O5/Ti 複合電極電位窗範圍之探討----------78
4-3-1 蒸氣再處理 RuO2-Ta2O5/Ti 複合電極生成氧氣和氫氣生成電位之影響--78
4-3-2 蒸氣再處理對 RuO2-Ta2O5/Ti 複合電極生成氧氣和氫氣反應動力學之影響--------------------------------------------------------------------80
4-3-3 蒸氣再處理 RuO2-Ta2O5/Ti 複合電極 CV 行為之影響--------------89
4-3-4 蒸氣再處理 RuO2-Ta2O5/Ti 複合電極之表面結構分析--- -----------95
4-3-5 蒸氣再處理 RuO2-Ta2O5/Ti 複合電極之表面元素鍵結分析-----------95
第五章 總結---------------------------------------------------------106
參考文獻-----------------------------------------------------------109
附錄---------------------------------------------------------------117
【1】方偉權, “超高電容器電極薄膜材料應用及其製作技術”, 工業材料257期,
(2008) 145.
【2】李俊龍, 閔俊國, “從Advance Capacitor World Summit 2006看超高電容器發
展現況”, 工業材料239期, (2006) 167-171.
【3】黃震宇, 蔡麗端, “高能量儲能電容器之近期發展” 工業材料, 242期, (2007)
112-121.
【4】S.M. Lipka, “Electrochemical Capacitors Utilizing Low Surface
Area Carbon Fiber”, IEEE, 27, (1997).
【5】B.E. Conway, “Transition from Supercapacitor to Battery
Behavior in Electrochemical Energy Storage”, Journal of
Electrochemical Society, 138, (1991) 539-553.
【6】高志勇,陳耿陽,吳富其,江萬爵,賴志坤, “超高電容器製程技術簡介”, 工業材料
166 期, (2000) 119.
【7】鄭培哲, “碳纖維表面含氧及含銅官能基之電化學行為探討”, 國立成功大學化學工
程所碩士論文, (2003).
【8】K. Yamashita and J. Futenma, “Effect of location and width of
doping region on efficiency in doped organic light-emitting
diodes”, Synthetic Metals, Vol.111-112, (2000) 87-90.
【9】H. Ho, and I. Hoe, “Characterization of new red dopants for red
color OLED”, Current Applied Physics, Vol.5, (2005) 345-347.
【10】W. Fangcong, L. Su and C. Zhang, “The dielectric constant of
materials effect the property of the OLED”, Microelectronics
Journal, Vol.38, (2007) 259-261.
【11】H.T. Lu, Yokoyama and Meiso, “Plasma preparation on indium-tin-
oxide anode surface for organic light emitting diodes”, Journal
of Crystal Growth, Vol.260, (2004) 186-190.
【12】C. Arbizzani, M. Mastragostino and L. Meneghello, “Polymer-
based redox supercapacitors: A comparative study”,
Electrochimica Acta, 41, (1996) 21.
【13】A.M. Couper, D. Pletcher and F.C. Walsh, “Electrode materials
for electrosynthesis”, Chemical Reviews, 90, (1990) 837-865.
【14】H. Wendt, “Electrocatalysis in organic electrochemistry”,
Electrochimica Acta, 29, (1984) 1513-1525.
【15】S. Trasatti, “Physical electrochemistry of ceramic oxides”,
Electrochimica Acta, 36, (1991) 225-241.
【16】V. Srinivasan and J.W. Weidner, “Capacitance studies of cobalt
oxide films formed via electrochemical precipitation”, Journal
of Power Sources, Vol.108, (2002) 15-20.
【17】C.C. Hu, Y.H. Huang and K.H. Chang, “Annealing effects on the
physicochemical characteristics of hydrous ruthenium and Ru–Ir
oxides for electrochemical supercapacitors”, Journal of Power
Sources, Vol.108, (2002) 117-127.
【18】C.C. Hu and K.H. Chang, “Cyclic voltammetric deposition of
hydrous ruthenium oxide for electrochemical capacitors: effects
of codepositing iridium oxide”, Electrochimica Acta, Vol.45,
(2000) 2685-2696.
【19】C.C. Hu and Y.H. Huang, “Effects of preparation variables on
the deposition rate and physicochemical properties of hydrous
ruthenium oxide for electrochemical capacitors”, Electrochimica
Acta, Vol.46, (2001) 3431-3444.
【20】R.N. Reddy and R.G. Reddy, “Synthesis and electrochemical
characterization of amorphous MnO2 electrochemical capacitor
electrode material”, Journal of Power Sources, Vol.132, (2004)
315-320.
【21】Y. Takasu, C. Matsuo, T. Ohuma, M. Ueno and Y. Murakami, “Dip-
Coated Ru-Mo-O/Ti Electrodes for Electrochemical Capacitors”,
Chemistry Letters, (1998) 1215-1216.
【22】陳怡倫, “以陽極沉積法製備之氧化錳的材料特性與擬電容性質”, 國立成功大學
材料科學及工程學系碩士論文, (2004).
【23】J.P. Zheng, P.J. Cygan, and T.R. Jow, “Hydrous Ruthenium Oxide
as an Electrode Material for Electrochemical Capacitors”,
Journal of Electrochemical Society, 142, (1995) 2699-2703.
【24】J.H. Jang, A. Kato, K. Machida and K. Naoi, “Supercapacitor
Performance of Hydrous Ruthenium Oxide Electrodes Prepared by
Electrophoretic Deposition”, Journal of Electrochemical
Society, 153, (2006) A321-A328.
【25】黃耀煌,胡啟章, “循環伏安法製備之含水釕氧化物於電化學電容器的應用”, 國
立中正大學化工所碩士論文, (1999).
【26】K.H Chang and C.C. Hu, “Oxidative Synthesis of RuOx‧nH2O with
Ideal Capacitive Characteristics for Supercapacitors”, Journal
of Electrochemical Society, 151, (2004) A958-A964.
【27】Y.Y. Liang, H.L. Li and X.G. Zhang, “ Solid state synthesis of
hydrous ruthenium oxide for supercapacitors”, Journal of Power
Sources, 173, (2007) 599-605.
【28】B. L. He and H. L. Li, “Preparation and characterization of
ruthenium-doped polypyrrole composites for supercapacitor”,
Materials Science and Engineering, 374, (2004) 322–326.
【29】C.C. Hu and K.H. Chang, “Two-step hydrothermal synthesis of
Ru–Sn oxide composites for electrochemical supercapacitors”,
Electrochimica Acta, 52, (2007) 4411-4418.
【30】Y. U. Jeonga and A. Manthiram, “Amorphous tungsten oxide
ruthenium oxide composites for electrochemical capacitors”,
Journal of Electrochemical Society, 148, (2001) A189-A193.
【31】A.M. Hussain and A. Kumar, “Enhanced electrochemical stability
of all-polymer redox supercapacitors with modified polypyrrole
electrodes”, Journal of Power Sources, 161, (2006) 1486-1492.
【32】S. Kumar and C. Zhou, “PAN/SAN/SWNT ternary composite: pore
size control and electrochemical supercapacitor behavior”,
Journal of Polymer Materials, 47, (2006) 5831-5837.
【33】A.B. Samui and P. Sivaraman, “All-solid-supercapacitor based
on polyaniline and sulfonated polymers”, Journal of Synthetic
Metals, 156, (2006) 1057-1064.
【34】B.J. Lee and J.M. Ko, “Carbon nanofibre/hydrous RuO2
nanocomposite electrodes for supercapacitors”, Journal of Power
Sources, 168, (2007) 546-552.
【35】B.N. Popov and H. Kim, “Characterization of hydrous ruthenium
oxide/carbon nanocomposite supercapacitors prepared by a
colloidal method”, Journal of Power Sources, 104, (2002) 52-61.
【36】Y. Zhao, L. Liu, J. Xu, J. Yang, M. Yan and Z. Jiang, “High-
performance supercapacitors of hydrous ruthenium
oxide/mesoporous carbon composites”, Journal of Solid State
Electrochemistry, 11, (2007) 283-290.
【37】C.C. Hu and C.C. Wang, “Improving the utilization of ruthenium
oxide within thick carbon–ruthenium oxide composites by
annealing and anodizing for electrochemical Supercapacitors”
Electrochemistry Communications, 4, (2002) 554-559
【38】K.H. Chang, C.C. Hu, C.Y. Chou, “Textural and pseudocapacitive
characteristics of sol–gel derived RuO2•xH2O: Hydrothermal
annealing vs. annealing in air” Electrochimica Acta, 54, (2009)
978-983.
【39】M.S. Dandekar and G. Arabale, “Preparation and
characterization of composite electrodes of coconut-shell-based
activated carbon and hydrous ruthenium oxide for
supercapacitors”, Journal of Power Sources, 141, (2005) 198-203.
【40】M. Ramani and B.S. Haran, “Studies on activated carbon
capacitor material loaded with different amounts of ruthenium
oxide”, Journal of Power Sources, 93, (2001) 209-214.
【41】J.H. Park, J.M. Ko and O.O. Park, “Carbon nanotube/RuO2
nanocomposite electrodes for supercapacitors”, Journal of
Electrochemical Society, 150, (2003) A864-A867.
【42】M. Ramani, B.S. Haran, R.E. White, and B.N. Popov, “Synthesis
and Characterization of Hydrous Ruthenium Oxide-Carbon
Supercapacitors”, Journal of Electrochemical Society, 148,
(2001) A374-A380.
【43】O. Barbieri, M. Hahn, A. Foelske and R. Kotz, “Effect of
Electronic Resistance and Water Content on the Performance of
RuO2 for Supercapacitors”, Journal of Electrochemical Society,
153, (2006) A2049-A2054.
【44】H. Li, R. Wang and R. Cao, “Physical and electrochemical
characterization of hydrous ruthenium oxide/ordered mesoporous
carbon composites as supercapacitor”, Microporous and
Mesoporous Materials, 111, (2008) 32-38.
【45】Y.T. Kim, K. Tadai and T. Mitani, “Highly dispersed ruthenium
oxide nanoparticles on carboxylated carbon nanotubes for
supercapacitor electrode materials”, Journal of Materials
Chemistry, 15, (2005) 4914-4921.
【46】Il. H. Kim and K. B. Kim, “Electrochemical Characterization of
Hydrous Ruthenium Oxide Thin-Film Electrodes for
Electrochemical Capacitor Applications”, Journal of
Electrochemical Society, 153, (2006) A383-A389.
【47】V. Subramaniana, S.C. Hall, P.H. Smith and
B.Rambabu, “Mesoporous anhydrous RuO2 as a supercapacitor
electrode material”, Solid State Ionics, 175, (2004) 511-515.
【48】Il.H. Kim and K.B. Kim, “Ruthenium Oxide Thin Film Electrodes
for Supercapacitors”, Electrochemical and Solid-State Letters,
5, (2001) A62-A64.
【49】V.M. Gun’ko, J. S. Zieba, R. Leboda, K.N. Khomenko, O.A.
Kazakova, M.O. Povazhnyak and I.F. Mironyuk, “Influence of
morphology and composition of fumed oxides on changes in their
structural and adsorptive characteristics on hydrothermal
treatment in steam phase at different temperatures”, Journal of
Colloid and Interface Science, 269, (2004) 403-424.
【50】V.R. Choudhary, S. Banerjee and B.S. Uphade, “Activation by
hydrothermal treatment of low surface area ABO3-type perovskite
oxide catalysts”, Applied Catalysis A: General, 197, (2000)
L183-L186.
【51】PVP 商品簡介, 上海勝浦新材料有限公司提供. http://www.chinapvp.com/
【52】PVP 商品簡介, 晉倫公司提供. http://www.ginar.com.tw/
【53】張慶國, “多成分金屬氧化物之合成與應用”, 國立高雄應用科技大學化學工程所
碩士論文, (2005).
【54】Y. Zhang and L. Huang, “Underpotential Deposition of Copper on
Electrochemically Prepared Conductive Ruthenium Oxide Surface”,
Electrochemical and Solid-State Letters, Vol.7, (2004) C107-
C110.
【55】M. Toupin, T. Brousse and D. Bélanger, “Charge Storage
Mechanism of MnO2 Electrode Used in Aqueous Electrochemical
Capacitor”, Chemistry of Materials, Vol.16, (2004) 3184-3190
【56】A. Foelske, O. Barbieri, M. Hahn and R. Kotz, “An X-Ray
Photoelectron Spectroscopy Study of Hydrous Ruthenium Oxide
Powders with Various Water Contents for Supercapacitors”,
Electrochemical and Solid-State Letters, Vol.9, (2006) A268-
A273.
【57】C.C. Hu, H.R. Chiang and C.C. Wang, “Electrochemical and
structural investigations of oxide films anodically formed on
ruthenium-plated titanium electrodes in sulfuric acid”, Journal
of Solid State Electrochemistry, Vol.7, (2003) 477-484.
【58】李弘傑, “以陽極、陰極與循環伏安沉積法在 RuCl3 水溶液中沉積釕氧化物薄
膜”, 國立高雄應用科技大學化學工程所碩士論文, (2006).
【59】J.H. Jang and K. Machida, “Electrophoretic deposition (EPD) of
hydrous ruthenium oxides with PTFE and their supercapacitor
performances ”, Electrochimica Acta, 52, (2006) 1733-1741.
【60】Y. Takasu and Y. Murakami, “Design of oxide electrodes with
large surfacearea”, Electrochimica Acta, 45, (2000) 4135-4141.
【61】J. Ribeiro and A.R. Andrade, “Characterization of RuO2-Ta2O5
coated titanium electrode microstructure morphology and
electrochemical investigation”, Journal of Electrochemical
Society, 151, (2004) 106-112.
【62】謝育淇, “雙成分觸媒 Pt/RuO2 奈米桿之甲酸燃料陽極氧化反應動力學及 RuO2
奈米桿之層溫脫附研究”, 國立台灣科技大學化學工程系碩士學位論文, (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔