(3.236.222.124) 您好!臺灣時間:2021/05/14 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉容甄
研究生(外文):Rong-Zhen Liu
論文名稱:大豆油甲基酯臭氧化改質之研究
論文名稱(外文):Ozonolysis Modification of Methyl Soyate
指導教授:林榮顯陳奕宏陳奕宏引用關係
指導教授(外文):Rong-Hsien LinYi-Hung Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:137
中文關鍵詞:臭氧化生質柴油改質程序氧化穩定性不飽和碳碳
外文關鍵詞:ozonolysisbiodieselunsaturated carbon-carbon double bondesteraldehyde
相關次數:
  • 被引用被引用:7
  • 點閱點閱:333
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討生質柴油(biodiesel)的新穎臭氧化改質技術,用以提高生質柴油的 氧化穩定性以及改善長期儲存可能產生質變的問題,進而得到對環境更穩定、永續、及友善的綠色能源。本研究利用臭氧對不飽和碳碳雙鍵有高的反應選擇性,在大豆生質柴油中通入臭氧,配合不同的觸媒進行改質反應,可有效減少不飽和碳碳雙鍵數目與生成相對應的酯類。相關的研究參數包括:甲醇與脂肪酸甲基酯的莫耳比、反應溫度、臭氧劑量、觸媒種類、及觸媒劑量等。在本研究實驗情況下,結果顯示對於各個參數最適化條件為甲醇與脂肪酸甲基酯的莫耳比28:1、反應溫度20oC、臭氧劑量1.2 mol mol-1、使用硫酸當觸媒、與觸媒劑量1% w/w(基於大豆油甲基酯的重量)時為最佳操作條件,能增加單甲基酯或雙邊甲基酯產生率(Yield of fatty acid methyl esters after ozonolysis, YFAME,OZ)。本研究將所有參數同時調整最適化條件後,可以得到其碳碳雙鍵移除率為84.4%,而所生成之酯類與醛類的組成分別為94.1%和2.7%。本研究係利用核磁共振儀之氫譜(1H NMR)的訊號面積分析,得到改質後大豆油甲基酯之產物種類與其不飽和碳碳雙鍵的去除效率。此外也藉由氣相層析質譜分析儀(GC-MS)分析,分析反應過程中可能的中間產物種類,而提出不同觸媒催化系統之臭氧改質程序反應機制圖。因此本研究對於大豆油甲基酯的臭氧化改質程序提供了一個具體發展的方向,而可得到具有好的氧化穩定性之生質柴油。
The objective of this study is to modify methyl soyate (biodiesel) by ozonolysis to eliminate the carbon-carbon double bonds and produce a mixture of desired methyl and dimethyl esters for the enhancement of its oxidative stability. A novel acid-catalyzed ozonolysis was used, in which ozone efficiently cleaves the unsaturated fatty acids at the carbon-carbon double bonds. In comparison with the base-catalyzed ozonolysis process, this application reveals better selectivity for esters. Ozone is known to selectively react with the unsaturated carbon-carbon double bonds of the methyl soyate. The experimental parameters included the catalyst type, molar ratio of methanol to methyl soyate, catalyst dosage, reaction temperature, and ozone dosage. Ozone-containing oxygen gas with the ozone concentration of about 25 g/m3 was bubbled into the reaction system at a gas flow rate of 1.95 L/min. Ozonolysis of methyl soyate was conducted in the absence and presence of methanol or catalyst at the reaction temperature of -10 to 30°C. The reaction extent of ozonolysis as a function of ozone dosage was analyzed based on the signal areas in the 1H NMR spectra. Accordingly, the removal of the unsaturated carbon-carbon double bonds as well as the yields of the esters and aldehydes were estimated. The esters and aldehydes are the major and minor products, respectively, while the product composition would depend on the experimental conditions especially the catalyst type. The sulfuric acid is recommended to be employed as the catalyst for better selectivity of ozonization products while the yields of the esters and aldehydes are with the values of 69.9-89.9% and 5.4-11.4%, respectively. As a result, this study provided the useful information about the ozonolysis modification of the methyl soyate.A novel acid-catalyzed ozonolysis was used, in which ozone efficiently cleaves the unsaturated fatty acids at the carbon-carbon double bonds. In comparison with the base-catalyzed ozonolysis process, this application reveals better selectivity for esters.
總 目 錄
第一章 緒論 1
1.1 前言 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 生質柴油製造基本原理 5
2.1.1 均相觸媒轉酯化程序 7
2.1.2 生質柴油發展現況 8
2.2 生質柴油之特性 15
2.2.1 十六烷值 16
2.2.2 閃火點 16
2.2.3 熱值 17
2.2.4 雲點、流動點與冷濾點 17
2.2.5 碘價 17
2.2.6 酸價 18
2.2.7 過氧化價 18
2.3 影響生質柴油的油品安定性因素 18
2.3.1 油脂自氧化反應機制 18
2.4 臭氧之性質與應用 20
2.4.1 臭氧反應之影響因子 21
2.4.2 臭氧與水中有機物的反應 22
2.4.3 臭氧與烯烴類化合物的反應 23
2.5 核磁共振 25
2.5.1 歷史背景 25
2.5.2 核磁共振原理 26
第三章 研究方法 29
3.1 藥品 29
3.2 實驗設備與分析儀器 29
3.3 實驗方法 30
3.3.1 批式轉酯化反應系統 31
3.3.2 氣相臭氧分析方法 31
3.3.3 批次開放式臭氧化改質反應系統 32
3.4 實驗分析方法 32
3.4.1 以核磁共振儀分析生質柴油產率之方法 32
3.4.2 以核磁共振儀分析臭氧化程序改質後各產物產率之方法 32
3.4.3 以核磁共振儀分析臭氧化程序改質後斷鍵率的計算 33
3.4.4 以氣相層析質譜儀分析臭氧化程序改質後的產物 34
第四章 結果與討論 35
4.1 批次臭氧化改質反應系統 35
4.2 臭氧化程序反應系統中操作條件之影響 36
4.2.1 不同觸媒對脂肪酸甲基酯臭氧化改質之影響 36
4.2.2 nM/nF對脂肪酸甲基酯臭氧化改質之影響 39
4.2.3 Wcat對脂肪酸甲基酯臭氧化改質之影響 39
4.2.4 溫度對脂肪酸甲基酯臭氧化改質之影響 40
4.2.5 投入臭氧劑量對脂肪酸甲基酯臭氧化改質之影響 40
4.2.6 脂肪酸甲基酯臭氧化改質之動力學探討 40
4.3 脂肪酸甲基酯臭氧化改質後物理特性之分析 42
第五章 結論與建議 43
5.1 結論 43
5.2 建議 44
參考文獻 103
附錄A. 批次冷凝回流式臭氧化改質反應系統 108
A.1 實驗步驟 108
A.2 實驗結果與討論 108
附錄B. 非恆溫臭氧化改質反應系統 118
附錄C. 實驗原始數據 120
附錄D. GC-MS動態取樣圖譜 122
附錄E. NMR相關圖譜 132
附錄F. 以核磁共振儀分析臭氧化程序改質後其各產物的生成率 136
1.Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M.J. and Navarro, A., Catalytic production of biodiesel from soybean oils, used frying oil and tallow, Biomass and Bioenergy, 18, 515-527, 2000.
2.Baber, T.M., Graiver, D., Lira, C.T. and Narayan, R., Application of catalytic ozone chemistry for improving biodiesel product performance, Biomacromolecular, 6(3), 1334-1344, 2005.
3.Becker, E.D., Analytical Chemistry, 65(6), 295-306, 1993.
4.Bloch, F., Nuclear induction, Physical Reviev, 70(7), 460-474, 1946.
5.Díaz, M.F. and Gavínb, J.A., Characterization by NMR of ozonized methyl linoleate, Journal of the Brazilian Chemical Society, 18(3), 513-518, 2007.
6.Encinar, J.M., Gonalez, J.F., Rodriguez, J.J. and Tejedor, A., Biodiesel fuels from vegetable oils: transesterification of cynara cardunculus L. oils with ethanol, Energy & Fuels, 16, 443-450, 2002.
7.European Biodiesel Board (EBB), The statistics for EU biodiesel production by country, http://www.ebb-eu.org/prev_stats_production.php, 2006.
8.Freedman, B., Pryde, E.H. and Mounts, T.L., Variables affecting the yields of fatty acid esters from transesterified vegetable oils, Journal of American Oil Chemist’s Society, 61(10), 1638-1643, 1984.
9.Freedman, B. and Bagby, M.O., Predicting cetane number of n-alcohols and methyl esters from their physical properties, Journal of American Oil Chemist’s Society, 67, 565-575, 1990.
10.Gerpen, J.V., Shank, B., Pruszko, R., Clements, D. and Knothe, G., Biodiesel Production Technology, NREL/SR-510-36244, National Renewable Energy Laboratory, Golden, Colorado, USA, 2004.
11.Gelbard, G., Bres, O., Vargas, R.M., Vielfaure, F. and Schuchardt, U.F., 1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. Journal of The American Oil Chemists Society, 72 (10), 1239-1241, 1995.
12.Graboski, M. S. and McCormick, R. L., Combustion of fat and vegetable oil derived fuels in diesel engine, Progressive Energy and Combustion Science, Vol. 24, 125-164, 1998.
13.Hoigné, J. and Bader, H., The role of hydroxyl radical reaction in ozonation processes in aqueous solution, Water Research, 10, 377, 1976.
14.Hoigné, J. and Bader H., Rate constants of reactions of ozone with organic and inorganic compounds in water - non-dissociating organic compounds, Water Research, 17, 173-183, 1983.
15.Jin, F., Kawasaki, K., Kishida, H., Tohji, K., Moriya, T. and Enomoto, H., NMR spectroscopic study on methanolysis reaction of vegetable oil, Fuel, 86, 1201-1207, 2007.
16.Knothe, G., Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy, Journal of The American Oil Chemists Society, 77(5), 489-493, 2000.
17.Knothe, G., Determining the blend level of mixtures of biodiesel with conventional diesel fuel by fiber-optic near-infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy, Journal of The American Oil Chemists Society, 78(10), 2001.
18.Knothe, G. and Kenar, J.A., Determination of the fatty acid profile by 1H-NMR spectroscopy, European Journal of Lipid Science and Technology, 106, 88–96, 2004.
19.Knothe, G., Gerpen, J.V. and Krahl, J.G., The Biodiesel Handbook, American Oil Chemists' Society press, Urbana, Illinois, USA, 2005.
20.Knothe, G., Analyzing biodiesel: standards and other methods, Journal of The American Oil Chemists Society, 83(10), 2006.
21.Knothe, G., “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties, Energy & Fuels, 22(2), 1358-1364, 2008.
22.Kusdiana, D. and Saka, S., Effects of water on biodiesel fuel production by supercritical methanol treatment, Bioresource Technology, 91(3), 289-295, 2004.
23.Ma, F. and Hanna, M.A., Biodiesel production: a review, Bioresource Technology, 70, 1-15, 1999.
24.Marshall, J.A., Garofalo, A.W. and Sedrani, R.C., The direct conversion of olefins into esters through ozonolysis, Synlett, 08, 643-645, 1992.
25.Marshall, J.A. and Garofalo, A.W., Oxidative cleavage of mono-, di-, and trisubstituted olefins to methyl esters through ozonolysis in methanolic sodium hydroxide, Journal of Organic Chemistry, 58(14), 3675 - 3680, 1993.
26.Marchetti, J.M., Miguel, V.U. and Errazu, A.F., Possible methods for biodiesel production, Renewable and Sustainable Energy Reviews, 11, 1300-1311, 2007.
27.Monyem, A. and Gerpen, J.H.V., The effect of biodiesel oxidation on engine performance and emissions, Biomass and Bioenergy, Vol. 20, 317-325, 2001.
28.Nishikawa, N., Yamada, K., Matsutani, S., Higo, M., Kigawa, H. and Inagaki, T., Structures of ozonolysis products of methyl oleate obtained in a carboxylic acid medium, Journal of The American Oil Chemists Society, 72(6), 1995.
29.Purcell, E.M., Torrey, H.C., and Pound, R.V., Resonace absorption by nuclear magnetic moments in a solid, Physical Reviev, 69, 37-38, 1946.
30.Silverstein, R.M., Webster, F.X., Spectrometric Identification of Organic Compounds, 6th ed., John Wiley & Son, Inc., 1963.
31.Soriano, Jr, N.U., Migo, V.P. and Matsumura, M., Functional group analysis during ozonation of sunflower oil methyl esters by FT-IR and NMR, Chemistry and Physics of Lipids, 126, 133–140, 2003.
32.Soriano, Jr, N.U., Migo, V.P. and Matsumura, M., Ozonation of sunflower oil: spectroscopic monitoring of the degree of unsaturation, Journal of The American Oil Chemists Society, 80(10), 997-1001, 2003.
33.Soriano, Jr, N.U., Migo, V.P. and Matsumura, M., Ozonized vegetable oil as pour point depressant for neat biodiesel, Fuel, Vol. 85, 25-31, 2006.
34.Noureddini, H., Harkey, D. and Medikonduru, V., A continuous process for the conversion of vegetable oils into methyl esters of fatty acids, Journal of the American Oil Chemists Society , 75(12), 1775-1783, 1998.
35.Rakness, K., Gordon, G., Langlais, B., Masschelein, W., Matsumoto, N., Richard, Y., Robson, C.M. and Somiya, I., Guideline for measurement of ozone concentration in the process gas from an ozone generator, Ozone Science and Engineering, 18(3), 209-229, 1996.
36.Razumovskii, S.D. and Zaikov, G.E., Ozone and Its Reactions with Organic Compounds, Elsevier, Amsterdam, Netherlands, 1984.
37.Sacchi, R., Addeo, F. and Paolillo, L., 1H and 13C NMR of virgin olive oil, Magnetic Resonance in Chemistry, 35, S133-S145, 1997.
38.Spectral Database for Organic Compounds (SDBS), http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
39.United stated environmental protection agency (USEPA), A comprehensive analysis of biodiesel impacts on exhaust emissions, Draft Technical Report, http://www.epa.gov/OMS/models/analysis/biodsl/p02001.pdf, EPA 420-P-02-001, October, 2002.
40.Vicente, G., Martinez, M. and Aracil, J., Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92, 297-305, 2004.
41.Wade, L.G., Organic Chemistry, ISBN 0-13-640392-1, Prentice-Hall International, Inc., 1987.
42.Wu, M., Church, D., Mahier, F.T.J., Barker, S.A. and Pryor, W.A., Separation and spectral data of the six isomeric ozonides from methyl oleate, Lipids, 27(2),129-135, 1992.
43.Xie, W. and Li, H., Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil, Journal of Molecular Catalysis a Chemical, 255, 1-9, 2006.
44.中國農民銀行,「台灣食用油脂市場規模調查」,中華民國88年度全年報表, 1999。
45.王莫昀,「生質柴油計畫2008全面實施」,中國時報,2006a。
46.王釿鋊、許湘琴,「生質柴油發展方向與機會,綠基會通訊」,11-13, 2006b。
47.王蕙君,「以核磁共振光譜學研究氨基酸水合」,國立中山大學化學系研究所,碩士論文,2003。
48.朱文海,「以黃豆皂腳提煉生質柴油之製程研究」,國立臺灣海洋大學輪機工程研究所,碩士論文,2006。
49.朱筱梵,「以核磁共振測擴散的技術研究 1-丁基-3-甲基咪唑六氟磷酸鹽在一些共溶劑中的離子狀態」,國立成功大學化學系研究所,碩士論文,2008。
50.李興旺,「石化柴油及添加生質柴油引擎排放多環芳香烴之特徵」,國立成功大學環境工程系,碩士論文,2004。
51.李融奇,「以粗魚油製備生質柴油油品性質與引擎排放特性之研究」,國立臺灣海洋大學輪機工程研究所,碩士論文,2007。
52.林昀輝、吳佩芬、盧文章、李宏台,「生質柴油的發展與推動」,綠色油田在農業永續發展扮演的角色研討會專刊,87-102,2007。
53.周美惠,「以生質柴油代替高價油──從德國經驗談起」,http://e-info.org.tw/special/fcar/2005/fc05092101.htm,2005。
54.吳明修,「以廢食用油所提煉之生質柴油的油品與引擎特性研究」,國立臺灣海洋大學輪機工程研究所,碩士論文,2004。
55.徐偉峻,「臭氧去除超濾薄膜積垢之研究」,國立中央大學環境工程研究所,碩士論文,2005。
56.邱貞蓉,「轉動地球生命力」,能源與生活,20-22,2006。
57.黃鈺航,「以超重力旋轉填充反應器將大豆油轉製成生質柴油之研究」,國立高雄應用科技大學化學工程與材料工程系,碩士論文,2008。
58.黃麗純,「利用NMR研究一種新蛇毒蛋白分子CTXn之結構與動力學」,國立中山大學化學系研究所,碩士論文,2003。
59.莊國立,「台灣生質柴油應用在柴油車輛對引擎性能和排放特性影響之研究」,國立台灣大學環境工程學研究所,碩士論文,2007。
60.經濟部,「石油供需月報表」,http://www.moeaec.gov.tw/statistics/files/9610石油供需月報表.htm,2007。
61.陳介武,「防制空氣污染面面觀」,http://www.soybean.org.tw/biodiesel-19.pdf, 2005。
62.陳志威、吳文騰,生生不息的生質能源,科學發展359期,http://0-nr.stic.gov.tw.lib1.npttc.edu.tw/ ejournal/NSCM/9111/9111-02.pdf,2002。
63.謝大成,「以二氧化鈦/氧化鋁觸媒臭氧化系統處理水中鄰苯二甲酸二甲酯溶液之研究」,國立高雄應用科技大學化學工程與材料工程系,碩士論文,2008。
64.鄭清山,「烷化生質柴油對柴油引擎影響之研究」,國立高雄第一科技大學環境安全與衛生工程系,碩士論文,2003。
65.豐原市公所,「生質柴油試行計畫」,http://www.fengyuan.gov.tw/biodiesel/p07.htm,2007。
66.嘉義市政府環境保護局,「生質柴油道路試行暨宣導計畫」,http://www.cycepb.gov.tw/oil/AboutB1.html,2008。
67.陳大麟,「石油、天然氣的特性」,科學發展356期, 2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔