(3.236.122.9) 您好!臺灣時間:2021/05/14 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張銘川
研究生(外文):Ming-Chuan Chang
論文名稱:聚苯胺/錳氧化物電極應用於超級電容器之製備
論文名稱(外文):Fabrication of PANI/Manganese Oxide the Apply on Electrochemical Supercapacitor
指導教授:高立衡高立衡引用關係李安成李安成引用關係
指導教授(外文):Li-Heng KaoAn-Cheng Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:125
中文關鍵詞:電化學電容器超級電容器脈衝電沈積聚苯胺錳氧化物
外文關鍵詞:Electrochemical CapacitorSupercapacitorsPulsed electrochemical depositionPolyanilineManganese oxide
相關次數:
  • 被引用被引用:7
  • 點閱點閱:832
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用電化學沈積方式在透明導電玻璃上製備聚苯胺/錳氧化物電極,藉由改變沈積參數以獲得不同的電容特性的材料。
研究過程主要是著重於探討苯胺單體使用量,硫酸添加量,掺雜酸、鹼,穩定劑以及使用不同沈積方式製備複材等操作變因對所製備之聚苯胺/錳氧化物電極材料特性的影響。並藉由循環伏安儀(CV)探討複合材料之電化學特性,傅立葉轉換紅外線光譜儀(FT-IR)進行材料特性分析。
實驗結果顯示藉由脈衝定電流製備聚苯胺/錳氧化物電極,鍍液組成為苯胺單體濃度0.1 M,硫酸濃度0.5 M,醋酸錳濃度0.1 M,醋酸鈉濃度0.5 M為最佳條件,比電容可達166.6 F/g。
聚苯胺/錳氧化物電極以Na2SO4水溶液做為電解液,經過1000圈掃描後,比電容僅衰退12.6 %,顯示聚苯胺/錳氧化物電極擁有高穩定性。
In this present study, the polyaniline/MnOX electrodes were electroplated onto ITO using electrochemical deposition route, by which the deposition parameters for the specific capacitance.
Influences of synthetic conditions on the characteristics of polyaniline/MnOX electrode were studied, including: the amount of aniline monomer and sulfuric Acid, the acid of different doping, the base, and the comparability of preparation composites by different electrochemical deposition route. The electrochemical characteristics of composites were studied by cyclic voltammetry (CV), the characteristics of polyaniline/MnOX composites were examined in terms of the FT-IR.
The results show that the highest capacitance of polyaniline/MnOX composites was obtained, and prepared with pulsed electrochemical deposition from the electrolyte containing 0.1 M Aniline, 0.5 M sulfuric Acid, 0.1 M Manganese(II) Acetate, 0.5 M Sodium Acetate. The capacitance reaches 166.6 F/g.
The specific capacitance decayed about 12.6 % after 1000 cycles scanning in the Na2SO4 electrolyte. It demonstrates that polyaniline/MnOX composites have a high stability.
總目錄
中文摘要 I
Abstract II
誌謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
第二章 理論與文獻回顧 2
2-1 電容之簡介 2
2-2 傳統電容器 2
2-3 電化學電容器 2
2-4 電化學原理與方法 5
2-4-1 電鍍 6
2-4-2 定電位法 8
2-4-3 定電流法 8
2-4-4 循環伏安法 8
2-5 超級電容器電極材料的種類 11
2-6 金屬氧化物電極 11
2-6-1 金屬氧化物電極製備的方法 11
2-6-2 錳氧化物於超級電容器之應用 13
2-7 超級電容器之儲電機制 14
2-7-1 電雙層儲電機制 15
2-7-2 偽電容儲電機制 16
2-8 有機共軛高分子 18
2-8-1 有機共軛高分子簡介 18
2-8-2 有機共軛高分子的成長機制 18
2-8-3 聚苯胺的結構 20
2-8-4 聚苯胺之聚合機制 22
2-8-5 聚苯胺之儲電機制 25
2-9 研究動機 26
第三章 實驗方法與步驟 27
3-1 實驗材料 27
3-2 實驗儀器 28
3-3 聚苯胺/錳氧化物電極之製備流程 29
3-3-1 電極基材之前處理 29
3-3-2 錳氧化物電極之製備 29
3-3-3 聚苯胺電極之製備 30
3-3-4 聚苯胺/錳氧化物電極之製備 30
3-4 電化學分析實驗 31
3-4-1 儀器裝置 31
3-4-2 循環伏安(Cyclic Voltammetry)測試 31
3-4-3 可逆性(Reversibility)測試 31
3-4-4 穩定性(Cycle number)測試 32
第四章 定電流製備聚苯胺/錳氧化物電極之電化學性能探討 34
4-1 聚苯胺之電化學行為探討 34
4-2 錳氧化物之電化學行為探討 45
4-3 聚苯胺/錳氧化物電極之電化學行為探討 50
4-4 材料特性之探討 66
4-4-1 傅立葉轉換-紅外線光譜分析(FT-IR) 66
4-4-2 表面型態(SEM) 68
第五章 脈衝定電流製備聚苯胺/錳氧化物電極之電化學電容器探討 73
5-1 聚苯胺之電化學行為探討 73
5-2 錳氧化物之電化學行為探討 82
5-3 聚苯胺/錳氧化物電極之電化學行為探討 87
5-4 材料特性之探討 100
5-4-1 傅立葉轉換-紅外線光譜分析(FT-IR) 100
5-4-2 表面型態(SEM) 102
第六章 結論 107
參考文獻 108
參考文獻
[1]吳乃立,王世育, “奈米結晶型氧化物之超高電容器” ,化工技術,3期,頁160-166.
[2]謝宏和,2007,氧化鎳/奈米碳纖維電極材料合成及其電化學電容器特性探討,國立高雄應用科技大學,碩士論文。
[3]劉俊興,2006,氧化錳系超電容之研究,私立大同大學,碩士論文。
[4]R. Kotz, M. Carlen, 2000, “Principle and applications of electrochemical capacitors”, Electrochemica. Acta., vol. 45, pp.2483-2498.
[5]B. E. Conway, 1999, Electrochemical Supercapacitors, Kluwer Academic Publishers, New York.
[6]鍾耀賢,2006,電化學製備硫酸鋅結構及其光學性質,國立台灣大學,碩士論文。
[7]胡啟章,2007,電化學原理與方法,初版二刷,五南圖書公司,台北。
[8]C. Arbizzani, M. Mastragostino, F. Soavi, 2001, “New trends in electrochemical supercapacitors”, J. Power Sources, vol. 100, pp.164-170.
[9]J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau, 2001, “Studies and characterizations of various activated carbons used for carbon/carbon supercapacitor”, J. Power sources, vol. 101, pp.109-116.
[10]C. Kim, 2005, “Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors”, J. Power Sources, vol. 142, pp.382-388.
[11]H. Y. Lee, J. B. Goodenough, V. Manivannan, 1999, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, vol. 2, p.565-577.
[12]C. C. Hu, Y. H. Huang, 1999, “Cyclic voltammetric deposition of hydrous Ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., vol. 146, pp.2465-2471.
[13]C. C. Hu, T. W. Tsou, 2003, “The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitor using experimental strategies”, J. Power Sources, vol.115, pp.179-186.
[14]R. N. Reddy, R. G. Reddy, 2004, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material”, J. Power Sources, Vol. 132, pp.315-320.
[15]H. Y. Lee, S. W. Kim, H. Y. Lee, 2001, “Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode”, Electrochemical and Solid-State Letters, vol. 4, pp.A19-22.
[16]J. Mozota, B. E. Conway, 1983, “Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behaviour”, Electrochemica. Acta., vol. 28, pp.1-8.
[17]H. Wendt, 1984, “Electrocatalysis in organic electrochemistry”, Electrochemica. Acta., vol. 29, pp.1513-1525.
[18]M. Ito, Y. Murakami, H. Kaji, K. Yahikozawal, Y. Takasu, 1996, “Surface Characterization of RuO2-SnO2 Coated Titanium Electrodes”, J. Electrochem. Soc., vol. 143, pp.32-36.
[19]P. Moggi, G. Predieri, F. D. Silvestri, A. Ferretti, 1999, “Ru/SiO2 catalysts prepared by the sol–gel method from Ru3(CO)12”, Applied Catalysis A: General, vol. 182, pp.257-265.
[20]T. C. Wen, C. C. Hu., 1992, ”Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides”, J Electrochem. Soc., vol. 139, pp.2158-2163.
[21]Y. C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, M. Yoshimura, 2002, “Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method”, Mater. res. bull., vol.37, pp.1411-1417.
[22]J. Mozota, B. E. Conway, 1983, “Surface and bulk processes at oxidized iridium electrodes-II. Conductivity-switched behaviour of thick oxide fims”, Electrochemica. Acta., vol. 28, 9-16.
[23]H. Y. Lee and J. B. Goodenough, 1999, “Supercapacitor Behavior with KCl Electrolyte”, J. solid state chem., vol. 144, pp.220-223
[24]S. C. Pang, M. A. Anderson, T. W. Chapman, 2000, “Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide”, J. Electrochem. Soc., vol. 147, pp.444-450.
[25]K. R. Prasad, N. Miura, 2004, “Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors”, Electrochemistry Communications Vol. 6, pp.1004-1008.
[26]D. Qu, H. Shi, 1998, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, vol. 74, pp.99-107.
[27]M. Nakamura, M. Nakanishi, K. Yamamoto, 1996, “Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors”, J. Power Sources, vol. 60, pp.225-231.
[28]A. G. MacDiarmid, A. J. Epstein, 1994, “The concept of secondary doping as applied to polyaniline”, Synth. Met., vol. 65, pp.103-116.
[29]J. L. Bredas, G. B. Street, 1985, “Polarons, bipolarons, and solitons in conducting polymers”, Acc. chem. res., vol. 18, pp.309-315.
[30]K. Bade, V. Tsakova, J. W. Schultze, 1992, “Nucleation, growth and branching of polyaniline from microelectrode experiments”, Electrochemica. Acta., vol. 37, pp.2255-2261.
[31]G. Dian, N. Merlet, G. Barbey, F. Outurquin, C. Paulmier, 1987, “Electrochemical polymerization of β-substituted and β, β’disubstituted selenophenes”, J. Electroanal. Chem., vol. 238, pp.225-237.
[32]M. L. Marcos, I. Rodriguez, J. Gonzalez-Velasco, 1987, “Mechanism of formation of polypyrrole on a Pt electrode from aqueous solutions”, Electrochemica. Acta., vol. 32, pp.1453-1459.
[33]林政彥,2002,定電位製備聚苯胺應用於電化學電容器之研究,國立中正大學,碩士論文。
[34]曾宏源,2003,脈衝電流法製備聚苯胺摻雜體形態之研究,國立台灣科技大學,碩士論文。
[35]A. G. MacDiarmid, A. J. Epstein, 1989, “Polyanilines: a novel class of conducting polymers”, Faraday Discuss Chem. Soc., Vol. 88, pp.317-332.
[36]A. A. Syed, M. K. Dinesan, 1991, “Review: Polyaniline—A novel polymeric material”, Talanta., Vol. 38, pp.815-837.
[37]Y. Wei, R. Hariharan, S. A. patel, 1990, “Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-substituted Anilines”, Macromolecules., vol. 23, pp.758-764.
[38]R. A. Cox, E. Buncel, 1975, in The Chemistry of Hydrazo, Azo and Azoxy Groups, S. Patel Ed., Wiley, New York.
[39]M. Breitenbach, K. H. Heckner, 1971, “Untersuchungen zur Kinetik der anodischen Oxydation von Anilin in Azetonitril an der rotierenden Platinelektrode”, J. Electroanal. Chem., vol. 29, pp.309-323.
[40]J. C. Chiang, A. G. MacDiarmid, 1986, “Polyaniline:Protonic acid doping of the emeraldine form to the metallic regime”, Synth. met., vol. 13, pp. 193-205.
[41]A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, L. D. Nanaxakkara, S, W. Wu, S. I. Yaniger, 1985, “Polyaniline: Interconversion of Metallic and Insulating Forms”, Mol. cryst. liq. cryst., vol. 121, pp.173-180.
[42]林育潤,2003,以新穎的聚苯胺植入法增進碳電極之電化學超電容,國立成功大學,碩士論文。
[43]Y. Dai, K. Wang, J. Zhao, J. Xie, 2006, “Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO4 solution”, J. Power Sources, vol. 161, pp.737-742.
[44]A. Burke, 2000, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, vol. 91, pp.37-50.
[45]B. Sari, M. Talu, F. Yildirim, 2002, “Electrochemical Polymerization of Aniline at Low supporting - Electrolyte Concentrations and Characterization of Obtained Films”, Russ. J. Electrochem., vol. 38, pp.707-713.
[46]S. K. Mondal, K. Barai, N. Munichandraiah, 2007, “High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate”, J. Electroanal. Chem., vol. 52, pp.3258-3264.
[47]C. C. Hu, C. H. Chu, 2000, “Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors”Mater. Chem. Phys. Vol.65, pp.329-338.
[48]劉崢,2000, “塑膠上超聲波化學鍍鎳工藝研究” ,吉林化工學院學報,頁13-17,9月。
[49]黃佑安,2008,電化學陽極沉積奈米結構氧化鎳電極及其電化學電容特性研究,國立高雄應用科技大學,碩士論文。
[50]劉坤亮,2007,以化學合成法製備聚苯胺/二氧化錳複合材料及其電化學特性之研究,國立高雄應用科技大學,碩士論文。
[51]M. G. Han, S. K. Cho, S. G. Oh, S. S. Im, 2002, “Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution”, Synth. Met., vol. 126, pp.53-60.
[52]黃郁嵐,2006,聚苯胺/改質奈米碳管及其複合材料製備,國立高雄應用科技大學,碩士論文。
[53]I. S. Lee, J. Y. Lee, J. H. Sung, H. J. Choi, 2005, “Synthesis and electrorheological characteristics of polyaniline-titanium dioxide hybrid suspension”, Synth. Met., vol. 152, pp.173-176.
[54]張治安,楊邦朝,鄭梅根,胡永遠,汪斌貨,2004, “超級電容器奈米氧化錳電極材料的合成與表觀” ,化學學報,62卷,17期,頁1617-1620。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔