(44.192.66.171) 您好!臺灣時間:2021/05/18 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王興傑
研究生(外文):Hsing-Chieh Wang
論文名稱:銅-鉻-氧化物薄膜的製備及其特性分析
論文名稱(外文):Preparation and Characterization of Copper Chromite Oxide Thin Films
指導教授:陳弘穎陳弘穎引用關係
指導教授(外文):Hong-Ying Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:146
中文關鍵詞:銅-鉻-氧化物薄膜載子類型熱力學
外文關鍵詞:copper chromite oxidethin filmscarrier typethermodynamics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由控制不同氧分壓下,進行高溫退火處理製備銅-鉻-氧化物薄膜,並探討薄膜之微結構與光電特性分析。先以反應及磁控濺鍍法製備銅鉻合金與銅鉻雙層薄膜,再經不同氣氛退火處理後,隨著退火溫度的改變,而薄膜表面顏色也產生變化。在800 ℃退火其晶體結構為CuO與CuCr2O4混合相,當退火溫度增加到900 ℃以上時,開始出現CuCrO2相,但仍有少許CuO相存在。對其CuCrO2薄膜進行光學性質與電性分析,在CuCr薄膜製備成CuCrO2薄膜,光學能隙值為2.25 eV,而電阻率最低可達28 Ω-cm;則Cu/Cr薄膜製備成CuCrO2薄膜,光學能隙值為2.8 eV,而電阻率最低可達16.3 Ω-cm;經由熱電效應分析載子類型,皆為p型半導體薄膜。
第二階段研究中,利用控制不同氧分壓下(10~100% O2/N2),以1000 ℃退火1小時製備p型CuCrO2薄膜,觀察其氧含量的多寡對導電率影響,並配合熱力學分析Cu-Cr-O系統中,判斷形成CuCrO2相的趨勢。在1000 ℃退火不同氧分壓下皆能生成CuCrO2相;當氧分壓超過0.1 atm以上才開始產生電性,由此可知氧含量的增加有助於導電度的提升,則CuCr薄膜在氧分壓為0.25 atm其電阻率最低,而Cu/Cr薄膜則在氧分壓為0.75 atm時可得最低電阻率。
In this study, the Cu-Cr-O thin films were prepared at high temperature with different partial oxygen pressure, and the properties of the films were also investigated. The CuCr alloy films and Cu/Cr bilayer films were deposited onto quartz substrates by using reactive and magnetron sputtering, respectively. After the films deposition, the films were annealed in different atmospheres. The color of the films were varied with annealing temperature. The mixture of CuO and CuCr2O4 appeared at 800 ℃, the CuCrO2 with minor CuO was exhibited when the annealing temperature above 900 ℃. The optical bandgap was 2.25 eV and resistivity was 28 Ω-cm, respectively, which were fabricated by CuCr alloy films. Meanwhile, the optical bandgap and resistivity were 2.8 eV and 16.3 Ω-cm, respectively, which was prepared from the Cu/Cr bilayer. All of the films were p-type semiconductivity, which was measured by using hot-probe technique.
In the second stage, the CuCrO2 films were preared at different pO2 (10~100%O2/N2) at 1000 ℃ for 1h. The thermodynamics is also applied associated with experimental results. The CuCrO2 films could be prepared in all cases. The conductivity was measurable when the pO2 value excess 0.1 atm, which reveals that the conductivity might be increasing with pO2 increasing. The lowest resistivity of CuCrO2 films was achieved at pO2 = 0.25 atm and pO2 = 0.75 atm for CuCr and Cu/Cr bilayer as the starting materials, respectivity.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 透明導電氧化物 1
1.2 三元銅鉻氧化物介紹 2
1.3 研究動機 10
1.4 研究目的 11
第二章 文獻回顧 12
2.1 製備CuCrO2薄膜 12
2.1.1 脈衝雷射沉積法 12
2.1.2 射頻磁控濺射法 13
2.1.3 金屬-有機化學氣相沉積法 13
2.1.4 固態反應法 14
第三章 實驗方法 20
3.1 實驗流程圖 20
3.2 薄膜製備 21
3.2.1 銅鉻合金薄膜製備 21
3.2.2 銅鉻雙層薄膜製備 21
3.3 固態燒結法 23
3.4 控制氣氛退火 23
3.6 分析儀器及其原理 26
3.6.1 X光繞射儀 26
3.6.2 場發射掃描式電子顯微鏡 27
3.6.3 紫外光/可見光吸收光譜 28
3.6.4 四點探針儀 30
3.6.5 熱針 32
第四章 結果與討論 34
4.1 固態燒結法製備CuCrO2粉末 34
4.1.1 粉末表面顏色變化 34
4.1.2 X光繞射分析 35
4.1.3 熱力學分析 37
4.1.4 場發射掃瞄式電子顯微鏡分析 44
4.1.5 電性分析 49
4.2 CuCr合金薄膜控制氣氛退火製備CuCrO2薄膜 51
4.2.1 薄膜表面顏色變化 51
4.2.2 X光繞射分析 53
4.2.3 場發射掃瞄式電子顯微鏡分析 58
4.2.4 紫外光/可見光光譜儀分析 70
4.2.5電性分析 79
4.3 CuCr合金薄膜之熱力學分析 82
4.4 CuCr合金薄膜控制氧分壓退火製備CuCrO2薄膜 91
4.4.1 X光繞射分析 91
4.4.2 場發射掃瞄式電子顯微鏡分析 97
4.4.3 紫外光/可見光光譜儀分析 100
4.4.4電性分析 103
4.5 Cu/Cr雙層薄膜控制氣氛退火製備CuCrO2薄膜 104
4.5.1 薄膜表面顏色變化 104
4.5.2 X光繞射分析 105
4.5.3 場發射掃瞄式電子顯微鏡分析 108
4.5.4紫外光/可見光光譜儀分析 117
4.5.5 電性分析 123
4.6 Cu/Cr雙層薄膜之熱力學分析 125
4.7 Cu/Cr雙層薄膜控制氧分壓退火製備CuCrO2薄膜 131
4.7.1 X光繞射分析 131
4.7.2 場發射掃瞄式電子顯微鏡分析 136
4.6.3 紫外光/可見光光譜儀分析 139
4.6.4 電性分析 142
第五章 結論 143
參考文獻 144
[1]H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bull., 25 (2000) 28.
[2]A.N. Banerjee and K.K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater., 50 (2005) 52.
[3]H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, and H. Hosono, Nature, 389 (1997) 939.
[4] M.C. Friedel and C. R. Hebd, Acad. Sci., 77 (1873) 211.
[5] A.F. Rogers, Am. J. Sci., 35 (1913) 290.
[6] A.F. Rogers, Am. Mineral., 7 (1922) 102.
[7] O. Crottaz, F. Kubel, and H. Schmid, J. Solid State Chem., 122 (1996) 247.
[8]M. A. Marquardt, N. A. Ashmore, and D. P. Cann, Thin Solid Films, 496 (2006) 146.
[9]S. Saadi, A. Bouguelia, and M. Trari, Renewable Energy, 31 (2006) 2245.
[10]N.W. Grimes, Phys. Technol., 6 (1975) 22.
[11]S. Boumaza, R. Bouarab, M. Trari, and A. Bouguelia, Energy Convers. Manage., 50 (2009) 62.
[12]W. Li and H. Cheng, J. Alloys Compd., 448 (2008) 287.
[13]P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Wiley-Interscience, New York, NY, 1972.
[14] K. Koumoto, H. Koduka, and W.S. Seo, J. Mater. Chem., 11 (2001) 251.
[15] N. Duan, A.W. Sleight, M.K. Jayaraj, and J. Tate, Appl. Phys. Lett., 77 (2000) 1325.
[16] R. Nagarajan , N. Duan , M.K. Jayaraj , J. Li , K.A. Vanaja , A. Yokochi , A. Draeseke ,J. Tateb, and A.W. Sleighta, J. Inorg. Organomet. Polym. Mater., 3 (2001) 265.
[17] Kazuhiko Tonooka , and Naoto Kikuchi , Thin Solid Films, 515 (2006) 2415.
[18] R. Schmid, Metall. Trans. B, 14B (1983) 473.
[19] J. D. Tretjakow, and H. Schmalzried, and Ber. Bensenges. Phys. Chem.,
69 (1965) 396.
[20] K. T. Jacob, G. M. Kale, and G. N. K. Iyengar, Journal Of Materials Science, 21 (1986) 2753.
[21] A.M.M. Gadalla and J. White,Trans. Brit. Ceram. Soc., 63 (1964) 535.
[22]J. Portier, H.S. Hilal, I. Saadeddin, S.J. Hwang, M.A. Subramanian, and G. Campet, Prog. Solid State Chem., 32 (2004) 207.
[23]J. Sun, T. Stirner, and A. Matthews, Surface & Coatings Technology, 201 (2006) 4201.
[24]J. Hu, H. Li, X. Huang, and L. Chen, Solid State Ionics, 177 (2006) 2791.
[25]K.J.W. Atkinson, R.W. Grimes, M.R. Levy, Z.L. Coull, and T. English, J. Eur. Ceram. Soc., 23 (2003) 3059.
[26]E.M. Alkoy and P.J. Kelly, Vacuum, 79 (2005) 221.
[27]S.C. Ray, Sol. Energy Mater. Sol. Cells. 68 (2001) 307.
[28]V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Applied Surface Science, 254 (2008) 3949.
[29]A. Sivasankar Reddy, Hyung-Ho Park, V. Sahadeva Reddy, K.V.S. Reddy, N.S. Sarma, S. Kaleemulla, S. Uthanna, and P. Sreedhara Reddy, Materials Chemistry and Physics, 110 (2008) 397.
[30]J. H. Shy, and B. H. Tseng, J. Phys. Chem. Solids, 69 (2008) 547.
[31]D. Li, X. Fang, Z. Deng, S. Zhou, R. Tao, W. Dong, T. Wang, Y. Zhao, G. Meng, and X. Zhu, J. Phys. D: Appl. Phys, 40 (2007) 4910.
[32]W.T. Lim, P.W. Sadik, D.P. Norton, S.J. Pearton, Y.L. Wang, and F. Ren,
Electrochem. Solid-State Lett., 10 (2007) H178.
[33]Z. Deng, X. Fang, D. Li, S. Zhou, R. Tao, W. Dong, T. Wang, G. Meng, and X. Zhu, J. Alloys Compd., (2009) doi:10.1016/j.jallcom.2009.05.001.
[34]T. Minami, H. Tanaka, T. Shimakawa, and T. Miyata, Microelectronics: Design, Technology, and Packaging, edited by Derek Abbott, 5274 (2004).
[35]R. Nagarajan, A.D. Draeseke, A.W. Sleight, and J. Tate, J. Appl. Phys, 89 (2001) 8022.
[36]S. Mahapatra and S.A. Shivashankar, Chem. Vap. Deposition, 9 (2003) 238.
[37] S. Götzendörfer, C. Polenzky, S. Ulrich, and P. Löbmann, Thin Solid Films, (2009) doi:10.1016/j.tsf.2009.02.153.
[38] S. Götzendörfer, R. Bywales, and P. Löbmann, J. Sol-Gel Sci. Technol., (2009) doi:10.1007/s10971-009-1989-z.
[39] S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, and X. Zhu, J. Cryst. Growth, 310 (2008) 5375.
[40]F.A. Benko and F.P. Koffyberg, Mat. Res. Bull., 21 (1986) 753.
[41]S. Kameoka, M. Okada, and A. P. Tsai, Catal. Lett., 120 (2008) 252.
[42]W. Li and H. Cheng, Solid State Sci., 9 (2007) 750.
[43]T. Chiu, K. Tonooka, and N. Kikuchi, Thin Solid Films, 516 (2008) 5941.
[44]P. W. Sadik, M. Ivill, V. Cracium, and D. P. Norton, Thin Solid Films, 517 (2009) 3211.
[45]A. C. Rastogi, S. H. Lim, and S. B. Desu, J. Appl. Phys., 104 (2008) 023712.
[46]E. A. Davis and N. F. Mott, Philos. Mag, 22 (1970) 903.
[47] G. Golan, A. Axelevitch, B. Gorestein, and V. Manevych, Microelectron. J., 37 (2006) 910.
[48]R. S. Yu, D. C. Tasi, R. S. Chu, C. J. Huang, and F. S. Shieu, J. Electroche. Soc., 154 (2007) H1014.
[49]M. Tanahashi, N. Furuta, T. Taniguchi, C. Yamauchi, and T. Fujisawa, ISIJ Int., 43 (2003) 7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top