(3.238.96.184) 您好!臺灣時間:2021/05/08 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:施淑萍
研究生(外文):Shu-Ping Shi
論文名稱:以溶膠凝膠法製備氧化鋅粉體於降解偶氮染料之研究
論文名稱(外文):Photodegradation of Azo Dye using ZnO Powders Prepared by Sol-Gel Method
指導教授:何詠碩黃芳榮黃芳榮引用關係
指導教授(外文):Yung-Shou HoFang-Jung Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:133
中文關鍵詞:溶膠-凝膠法氧化鋅光降解
外文關鍵詞:Sol-gelZinc oxidePhotodegradation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:743
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠-凝膠法製備氧化鋅奈米粉體。起始原料為乙醯丙酮鋅,改變不同劑量之配位劑及分散劑,經由溶液的混合、水解及縮聚合反應製備氧化鋅,主要以探討氧化鋅奈米粉體的製程參數及不同煆燒溫度對奈米粉體的型態微結構之影響,並藉由光分解偶氮染料之光催化實驗,進一步了解粉體微結構的差異對降解有機染料效果之影響。製程中添加醋酸做為配位劑,並以羥丙基纖維素做為分散劑。實驗中以 XRD、 TGA/DTA、 FT-IR、BET、 FE-SEM 及 UV-Vis 對氧化鋅奈米粉體做分析。
實驗發現,添加配位劑後之參數所製備氧化鋅粉體,其表面型態由微粒狀轉為棒狀結構,而一階降解反應速率常數可由 0.00719 min-1 提升至 0.03707 min-1。當製備條件相同(相同添加物及添加量)時,粉體比表面積為影響染料降解反應速率的主要因素;製備條件不同時,降解反應速率則受到表面型態影響大於比表面積,棒狀結構粉體之一階降解反應速率大於微粒狀結構粉體。
In this study, ZnO nanopowders were prepared by a sol-gel method, using [Bis(acetylacetonato)zinc(II)] as starting material. The influences of ligand agent and dispersing agent on the characterization of gel powders were also studied. The powders can be prepared via the procedures of mixing, hydrolysis and condensation reaction. The relationship between photocatalytic activity and microstructure, surface area were investigated. The ZnO nanopowders should be characterized by XRD, TGA/DTA, BET, FE-SEM and UV-Vis.
The morphology of ZnO powders prepared with ligand agent can change from particulates to rod-like shape, the reaction rate constant (k) was improved from 0.00719 to 0.03707 min-1.
The morphology of ZnO particles is very sensitive to the preparation conditions. Results indicated that the photocatalytic activity of ZnO powder depends on surface area for the same original ZnO powders prepared by equal conditions other than the different in calcination temperature. However, no direct relationship between photocatalytic activity and surface area was found for the differently original ZnO powders prepared by different conditions. Instead, the particle morphology significantly affects its photocatalysis.
總目錄
中文摘要 ……………………………………………………… Ⅰ
英文摘要 ……………………………………………………… Ⅱ
致謝 ……………………………………………………… Ⅲ
總目錄 ……………………………………………………… Ⅳ
表目錄 ……………………………………………………… Ⅷ
圖目錄 ……………………………………………………… Ⅸ
第一章 緒論………………………………………………… 1
1-1 前言…………………………………………… 1
1-2 研究動機……………………………………… 2
1-3 研究目的……………………………………… 4
第二章 文獻回顧…………………………………………… 6
2-1 氧化鋅 ( ZnO ) 基本性質…………………… 6
2-1-1 ZnO 結構 ……………………………… 6
2-1-2 ZnO 粉體之特性……………………… 6
2-1-3 ZnO 材料之應用……………………… 9
2-2 ZnO 之製備方式……………………………… 11
2-2-1 沈澱法………………………………… 11
2-2-2 溶膠凝膠法…………………………… 12
2-2-3 水熱法………………………………… 13
2-2-4 微乳液法……………………………… 14
2-2-5 噴霧熱分解法………………………… 15
2-2-6 CDJP 法………………………………… 16
2-3 溶膠-凝膠法…………………………………… 18
2-3-1 溶膠-凝膠法之起源與應用…………… 18
2-3-2 溶凝膠法之製程簡介及原理 ………… 18
2-3-3 起始原料之選擇 ……………………… 20
2-3-4 溶膠-凝膠法之優缺點 ………………… 22
2-4 光催化理論 …………………………………… 24
2-4-1 水污染 ……………………………… 24
2-4-2 光觸媒催化反應……………………… 24
2-4-3 異相催化反應 ………………………… 26
2-4-4 半導體光催化………………………… 28
2-4-5 影響光催化效率之因素 ……………… 29
2-4-6 ZnO之光催化機制 …………………… 34
2-4-7反應動力模式 ………………………… 35
2-5 染料廢水 ……………………………………… 39
2-5-1 台灣染料廢水汙染情形 ……………… 39
2-5-2 染料簡介 ……………………………… 40
2-5-3 染料之發光團學說及基本結構 ……… 40
2-5-4 染料廢水之處理 ……………………… 49
第三章 實驗方法與步驟 …………………………………… 53
3-1藥品與儀器……………………………………… 53
3-1-1 實驗藥品 ……………………………… 53
3-1-2 實驗儀器 ……………………………… 54
3-2 實驗流程 ……………………………………… 57
3-2-1 ZnO 粉體合成 ………………………… 57
3-2-2實驗變因………………………………… 57
3-3 特性分析 ……………………………………… 60
第四章 結果與討論 ………………………………………… 63
4-1 ZnO粉體之XRD 分析………………………… 63
4-2 ZnO乾膠之FT-IR 分析………………………… 75
4-3 ZnO粉體之熱重-熱差 (TGA/DTA) 分析…… 79
4-4 ZnO 粉體之SEM分析 ………………………… 84
4-4-1螯合劑對 ZnO 奈米粉體之影響……… 84
4-4-2煆燒溫度對 ZnO 奈米粉體之影響…… 87
4-4-3 羥丙基纖維素對 ZnO 奈米粉體之影響 90
4-5 比表面積分析與孔徑分析 …………………… 94
4-6 ZnO光觸媒降解 Orange II 之檢測…………… 105
4-6-1 染料選用………………………………… 105
4-6-2 觸媒量選用……………………………… 108
4-6-3 背景實驗………………………………… 110
4-6-4 Orange II 之光催化降解實驗 ………… 112
4-6-5 ZnO光觸媒降解Orange II反應速率分析 119
第五章 結論………………………………………………… 127
參考文獻 ……………………………………………………… 129
1.J. Yu, X. Zhao and Q. Zhao, “Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method”, Thin Solid Films 379 ( 2000) 7-14.

2.T. Hattori. “Sinterability of alkoxide-derived magnesia”, J. mater. sci. lett. 2 (1983) 503-504.
3.J. Livage, C. Sanchez, M. Henry, S. Doeuff, “The chemistry of the sol-gel process”, Solid State Ionic 32-33 ( 1989) 633-638.

4.Y. Takahashi, Y. Matsuoka, “Dip-coating of TiO2 films using a solderived form Ti(O-i-Pr)¬¬4-diethanolamine-H2O-i-PrOH system”, J. mater. sci. lett. 23(1998) 2259-2266.
5.M. Alguer and M. L. Calzada, “Ferroelectricity of lanthanum-modified lead titanate thin films obtained by a diol-based sol-gel method”, Appl. Phys. A68 (1999) 583-592.
6.U. Selvaraj,“Sol-gel processing of oriented PbTiO3 thin films with lead acetylacetonate as the lead precursor”, Mater. Lett. 20 (1994) 71-74.
7.竹內浩士、指宿堯嗣 編著;林振華 編譯,光觸媒商業最前線,全華,2005。
8.M. J. H. Henseler and R. J. Reeves, “Optical and photoelectrical properties of ZnO thin films and the effects of annealing"J. Cryst. Growth 287 (2006) 48-53.
9.鄭世裕, “無機奈米材料產業應用” , 工業材料雜誌, 190(2002) 85-95.
10.K. Y. Jung and Y. C. Kang, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis”, J. mater. sci. lett. 16 (1997) 1848-1849.
11.J. Muller and S. Weissenrieder, “ZnO-thin film chemical sensors”, Fresenius J. Anal. Chem. 349 (1994) 380.
12.M. S. Ramanchalam and A. Rohatgi, “Photoluminescence Study of ZnO Varistor Stability”, J. Electron Mater. 24 (1995) 413.
13.K. L. Chopra “Thin film Solar Cells”, (Plenum, New York, 1983).
14.Hui Cao and R.P.H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres”, Mater. chem. phys. 80(2003) 257-263.
15.科技發展政策報導, SR9109 | 中華民國九十一年九月。
16.M. Castellano and E. Matijevic, “Uniform colloidal zinc compounds of various morphologies”, Chem. of Mater. 1(1989) 78-82.
17.T. Tsuchida, “Preparation of uniform oxide particles by homogeneous precipitation from zinc sulfate and nitrate Solutions”, Chem. Lett. (1990)1769-1772.
18.S. M. Haile and D. W. Jr Johnson, “Aqueous precipitation spherical zinc oxide powders for varistor applications”, J. Am. Ceram. Soc. 72 (1989) 2004-2008.
19.K. Fujita, K. Matsuda, “Formation of zinc oxide by homogeneous precipitation method”, Bull. Chem. Soc. Jpn. 65(1992) 2270.
20.K. Kamata,“Synthesis of zinc oxide powder by hydrolysis of bis -(acetylacetonaton)-zinc (Ⅱ) in aqueous solution”, Chem. Lett. (1984) 2021-2022.
21.D. Jezequel, J. Guenot, N. Jouini, “Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics”, J. mater. res. 10 (1995) 77-83.
22.C. L. Carnes, “Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide”, Langmuir 16 (2000) 3764-3772.
23.A. Chittofrati and E. Matijevic, “Uniform particles of zinc oxide of different morphologies”, Colloids and Surface 48 (1990) 65-78.
24.T. Trindade and P. O’Brien, “Preparation of zinc oxide and zinc sulfide powder by controlled precipitation from aqueous solution”, J. Mater. Chem., 4 (1994) 1611-1617.
25.M. Singhal, V. Chhabra P. Kang and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion”, Mater. res. bull. 32 (1997) 239-247.
26.B. P. Lim and J. Wang, “A bicontinuous microemulsion route to zinc oxide powder”, Ceram. int. 24(1998) 205-209.
27.O. Milošević, D. Uskoković, “Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, Mater. sci. eng. 168 (1993) 249-252
28.O. Milošević, “Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method”, Mater. Lett.19(1994) 165-170.
29.T. Q. Liu, O. Sakurai, “Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques”, J. mater. sci. 21 (1986) 3698-3702.
30.K. Ohshima and K. Tsuto, 化學工學論文集,第18卷,第3號,第288頁, (1992)。
31.Y. Lin, Z. Tang, and Z. Zhang, “Preparation of nanometer zinc oxide powder by plasma pyrolysis technology and their application”, J. Am. Ceram. Soc. 83 (2000) 2869-2871.
32.Q. Zhong and E. Matijevic,“Preparation of uniform zinc oxide colloids by controlled double-jet precipitation”, J. Mater. Chem. 6 (1996) 443.
33.J. J. Ebelmen, Ann. 57(1846) 331.
34K. S. Matediyasni, R. T. Dollof, J. S. Smith, J. Amer. Ceram. Soc. 52(1969)513.
35.蔣孝澈, “溶凝膠法製作與應用專輯”,化工46(5)(1999) 12-15。
36.汪建民, “陶瓷技術手冊(上)”,經濟部,台北,(1994)。
37.周幸妃, “以有機前導物法製備鋅鐵氧化物粉末之探討”,國立成功大學資源工程研究所碩士論文,(2003)。
38.陳慧英,黃定加和朱琴億,“溶膠凝膠法在薄膜製備上之應用”,化工技術期刊,無機薄膜之製備與應用專輯,80(1999) 152- 167。
39.D. C. Bradley, R. C. Mehrota, C. P. Gaur, Acadmic Press, 1978.
40.H. K. Park, D. K. Kim and C. H. Kim, “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4 ”, J. Am. Ceram. Soc., 80 (1997) 743-749.
41.K. D. Kim and H. T. Kim, “Synthesis of TiO2 nanoparticles by hydrolysis of TEOT and decrease of particles size using a two-stage mixed method”, Powder technol., 119 (2001) 164-172.
42.K. S. Mazdiyasni, “Preparation of ultra-high-purity submicron refractory oxides”, J. Am. Ceram. Soc. 48 (1965) 372.
43.Tang, C., and Chen, V., “Nanofiltration of textile wastewater for water reuse,” Desalination 143 (2002)11-20
44.A. Akbari,“Treatment of textile dye effluent using a polyamide-based nanofiltration membrane,” Chem. Eng. Process. 41 (2002b)601-609
45.吳宗南,“電解Fenton 法處理染料染整廢水之可行性研究”,中央大學環境工程研究所碩士班 (1996)
46.李定中,觸媒的原理與應用,正中,十月(1999).
47.陳妙棋,複合鍍TiO2-Ni 光觸媒之製造與特性分析,碩士論文。
48.S. N. Frank, and A. J. Bard, J. Phys. Chem. 81 ( 1977) 1484.
49.T. Skata and T. Kawai, Academic press, New York, 1983.
50K. Rajehwar and N. R. de Tacconi , Chem. Mater. 13 ( 2001) 2765.
51.V. Subramanian and P. V. Kamat., J. Phys. Chem. B107 (2003) 7479-7485.
52.V. Subramanian, E. E. Wolf, P. V. Kamat., J. Am. Chem. Soc. 126 (2004) 4943-4950.
53.Skata,“ Heterogeneous photocatalysis in Liquid-Solid Interface,”In Photocatalysis : fundamentals and applications , John Wiley & Sons, New York (1989) 311-338.
54.Jr. W. D. Callister (1997) Materials science and engineering an introduction. John Willey & Sons, New York.
55.Q. Zhang, L. Gao, Appl. catal. B 26 (2000) 207.
56.W. Adrian, Electrochemistry of Semiconductors. (1998).
57.Z. Zhang, C. C. Wang., J. Phys. Chem. B. 102(1998)10871.
58.M. Gratzel, “Photoelectrochemical cells”, Nature 414(2001) 338-344.
59.呂宗昕,圖解奈米科技與光觸媒。
60.A. Reife, and H. S. Freeman, “Environmental Chemistry of Dyes and Pigments,” John Wiley & Sons, New York (1996).
61Klabunde, “Nanoscale Materials in Chemistry,” Wiley-Interscience, New York (2001).
62.印染整理業行業污染特性技術手冊, 12 版http://waste3.epa.gov.tw/download/iwms/fac_2005/1050%E5%8D%B0%E6%9F%93%E6%95%B4%E7%90%86%E6%A5%AD(89.12%E7%89%88).doc(2000)。
63.王美雲,“以菌種突變與混合菌相策略進行生物褪色動力學之研究鋁渣資源化剩餘物之再利用探討”,碩士論文,國立成功大學化學工程學系(2003)。
64.林永盛,“生長與染料褪色過程代謝產物促進染料生物褪色之探討”,碩士論文,私立逢甲大學化學工程學系(2002)。
65.郭啟祥,“以電聚浮除法處理Acid Orange 6 廢水之效能評估探討”,碩士論文,國立台灣大學環境工程研究所(2003)。
66.K. Rajeshwara, “Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9 (2008) 171–192
67H. Zhang, L. Duan, “The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron,” Dyes pigm. 65 (2005) 39-43
68.Maria P. Elizalde-Gonzalez, “Removal of acid orange 7 by guava seed carbon: A four parameter optimization study,” J. hazard. mater. (2009)
69.Y. Hou, J. Qu, “Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode,” Sci. total environ. 407(2009) 2431-2439
70N. Daneshvar, “Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder,” J. hazard. mater. 143 (2007) 95-101
71..A. A. Khodja , “Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions,” Journal of Photochem. and Photobiology A: Chemistry 141 (2001) 231-239
72.K. Bölümü, “Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight,” J. photochem. and Photobiology A: Chemistry 140 (2001) 263-268
73S. Sakthivel, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency ofZnO and TiO2,” Sol. energy mater. & Sol. Cells 77 (2003) 65–82
74.N. Daneshvar, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,” J. photochem. and Photobiology A: Chemistry 162 (2004) 317-322
75.S. J. Kim, “Preparation of ZnO nanopowders by thermal plasma and characterization of photocatalytic property,” Appl. surf. sci. 255 (2009) 5363-5367
76.D. Li, H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere 51 (2003) 129-137
77.C. A. Buckley, “Membrane Technology for the Treatment of Dyehouse Effluents,” Water sci. technol. 25 (1992) 203-209.
78.冬龍,“珍惜資源保護環境-印染污水處理新方法簡介”,經濟日報第三版,http://www.cdpa.org.cn/tempfile.asp?id=512(2004)。
79.S.N. Masoud, “Preparation of ZnO nanoparticles from [bis (acetylacetonato) zinc(II)]–oleylamine complex by thermal decomposition,” Mater. Lett. 62 (2008) 1890-1892
80.IUPAC Manual of Symbol and Terminology, Appendix 2, Part I, Colloid and surface chemistry, Pure Appl. Chem. 31 (1972) 578.
81楊文都,“微細顆粒鈦酸鍶(鈣)陶瓷之製備及其電性研究,” 博士論文,國立成功大學化學工程研究所(1995)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔