(3.80.6.131) 您好!臺灣時間:2021/05/15 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:安可慧
研究生(外文):Ko-Huei An
論文名稱:奈米級TiO2-xNy粉末的合成與光催化性質之研究
論文名稱(外文):Synthesis and Photocatalytic Properties of Nanometric-Sized TiO2-xNy Powders
指導教授:楊文都楊文都引用關係
指導教授(外文):Wen-Duo Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:71
中文關鍵詞:二氧化鈦熱水解法摻氮亞甲基藍光催化
外文關鍵詞:nanometric-sized TiO2-xNyoptimalthermal-decomposition processphotocatalytic degradation.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用熱水解法以合成奈米級TiO2-xNy粉末,以甲醇為溶劑,添加至四氯化鈦水溶液中,在鹼性溶液中均勻攪拌進行熱水解反應。經由水洗、過濾除去過多的氯,再經過冷凍乾燥合成出TiO2-xNy前導物,利用不同煅燒溫度來控制TiO2-xNy結晶型態及結晶度,探討前導物轉變成奈米TiO2-xNy粉末和微結構與粉末性質之影響。藉由FTIR、RAMAN、XRD、SEM、EDS等分析儀器,觀察其TiO2-xNy粉末在不同製程變數下之粉末性質差異。另將探討TiO2-xNy粉末在光催化的能力。研究結果顯示:在煅燒溫度500℃/水解反應溫度為55℃/氨水濃度為3.5 M時,所製得TiO2-xNy粉末細緻且為銳鈦礦結構,其顆粒大小為15~25nm,均勻性及分散性最佳且無團聚現象,隨著水解反應溫度及煅燒溫度的增加,粉末的顆粒大小也隨之增加,經由EDS證實粉末中含有Ti、O、N等元素,由Raman光譜之譜線位置檢定出570 cm-1附近有一個訊號產生,此訊號為N-Ti-O之結構,形成TiO2-xNy粉末。將改質過的TiO2-xNy粉末進行光催化測試,探討降解亞甲基藍之效率,結果顯示,在700℃煅燒,鹼液濃度3.0 M下所製備出的TiO2-xNy粉末為最適化條件,銳鈦礦/金相比例(%)為90.8/9.2,在紫外光照射下,於180分鐘可達97%的降解效率。
Titanium tetrachloride was utilized to be the raw material for the source of titanium ion (Ⅳ), methanol as solvent, to produce a nanometric-sized TiO2-xNy powders by thermal-decomposition process. The optimal preparatory conditions of nanometric-sized TiO2-xNy powders were also singled out by the effects on the morphologies and microstructures of TiO2-xNy powders, and the optimal preparatory conditions were obtained.
The precursors were characterized by FTIR, RAMAN, XRD, SEM and EDS, and those mechanisms for the evolution of crystalline materials in this process were proposed and discussed in the context about the microstructure. Furthermore, a photocatalytic degradation experiment of methylene blue was efficiently decolorized in the presence of the TiO2-xNy powders by exposing its aqueous solution to ultraviolet light.
It reveals that a nanometric-sized anatase TiO2-xNy with an average particle size at 15-25 nm in good homogeneity was synthesized at reaction temperature 55 oC, ammonia concentration 3.5 M and calcination temperature 500 oC. The obtained powder was also examined by EDS, exhibits the existence of Ti, O and N, in evidence of TiO2-xNy produced, as well as the powder also demonstrates a Raman shift at 570 cm-1, representing the structure of N-Ti-O. Finally, the nanometric-sized anatase/rutile TiO2-xNy powders were prepared at the molar ratio of 90.8/9.2 and demonstrated 97% photo-degradation of methylene blue in 180 min by UV light irradiation.
中文摘要............................................................................................. I
ABSTRACT.….................................................................................. II

誌謝..……........................................................................................... III

目錄..……........................................................................................... IV

表目錄..…........................................................................................... VII

圖目錄..…........................................................................................... VIII

第一章 緒論..................................................................................... 1
1.1 前言……………................................................................. 1
1.2 研究動機……………......................................................... 1
1.3 研究目的……………......................................................... 3
第二章 文獻回顧…………………………………………………. 4
2.1 二氧化鈦基本性質………................................................. 4
2.2 二氧化鈦光觸媒的反應機制......................................... 8
2.3 二氧化鈦的應用………………......................................... 10
2.4 二氧化鈦光觸媒之改質..................................................... 13
2.5 二氧化鈦改質方法……………......................................... 14
2.6 溶膠-凝膠法………………………………….................... 15
2.7 熱水解法…………………................................................. 15
第三章 實驗方法與步驟…………………………………………. 16
3.1 藥品………......................................................................... 16
3.2 實驗儀器…......................................................................... 17
3.3 實驗方法與流程................................................................. 17
3.3.1 二氧化鈦合成步驟................................................... 17
3.3.2 TiO2-xNy之製備程序................................................. 17
3.3.2.1 水解反應溫度的影響............................................ 17
3.3.2.2 鹼液濃度的影響.................................................... 18
3.4 光催化系統......................................................................... 20
3.4.1 光觸媒粉末降解亞甲基藍之實驗流程................... 21
3.5 性質測定............................................................................. 23
3.5.1 傅立葉轉換紅外光譜儀........................................... 23
3.5.2 X-光繞射分析儀........................................................ 23
3.5.3 掃描式電子顯微鏡................................................... 23
3.5.4 拉曼散射光譜分析................................................... 24
3.5.5 紫外光-可見光擴散式反射光譜.............................. 24
第四章 結果與討論………………………………………………. 25
4.1 不同水解反應溫度對TiO2-xNy粉末之物性分析.............. 25
4.1.1 傅立葉轉換紅外光譜儀分析................................... 25
4.1.2 X-光繞射儀之晶相分析............................................ 30
4.1.3 拉曼散射光譜儀....................................................... 33
4.1.4 掃描式電子顯微鏡之分析....................................... 38
4.2 不同鹼液濃度對TiO2-xNy粉末之物性分析...................... 42
4.2.1 傅立葉轉換紅外光譜儀分析................................... 42
4.2.2 X-光繞射儀之晶相分析............................................ 48
4.2.3 拉曼散射光譜儀....................................................... 54
4.2.4 掃描式電子顯微鏡之分析....................................... 59
4.3 光觸媒粉末降解亞甲基藍之檢測..................................... 63
4.3.1 未照光實驗............................................................... 63
4.3.2 紫外光波長(254 nm)之光催化實驗........................ 64
第五章 結論………………………………………………………. 68
參考文獻............................................................................................. 69
[1]S. C. Kim, M. C. Heo, S. H. Hahn, C. W. Lee, J. H. Joo, J. S. Kim, I. K Yoo, E. J. Kim, “Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films”, Mater. Let., 59 (2005) 2059-2063.
[2]W. W. So, S. B. Park, K. J. Kim, C. H. Shin and S. J. Moon, “The Crystalline Phase Stability of Titania ParticlesPrepared at Room Temperature by the Sol-Gel Method”, Journal of Materials Science, 36 (2001) 4299-4305.
[3]J. Yu, X. Zhao, Q. Zhao, “Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol-Gel Method”, Materials Chemistry and Physics, 69 (2001) 25-29.
[4]Y. X. Leng , J. Y. Chen, P. Yang, H. Sun and N. Huang, “Structure and Properties of Passirating Titanium Oxide Films Fabricated by DC Plasma Oxidation”, Surface and coating Technology, 166 (2003) 176-182.
[5]W. Liu and W. Zhu, “Preparation and Orientation Control of Pb1.1(Zr0.3Ti0.7)O3 Thin Films by a Modified Sol-Gel Process”, Materials Letters, 46 (2000) 239-243.2222.
[6]H.D. Nan,B.H. Lee,S.J. Kim,C.H, Jung,J.H. Lee,Sung Park〝Prepartion of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation〞Jpn.J.Appl.Phys.Vol.37pp.4603~4608 (1998).
[7]高濂、鄭珊、張青紅、陳憲偉,「奈米光觸媒」,五南圖書出版 有限公司,台北,2004,36-37 頁。
[8]S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, “Investigation on sol-gel synthesized Ag-doped TiO2 cermet thin films”, Thin Sol. Films, 474 (2005) 245-249.
[9]Z. Tang, J. Zhang, Z. Cheng, Z. Zhang, “Synthesis of nanosized rutile TiO2 powder at low temperature”, Mater. Chem. Phys., 77 (2002) 314-317.
[10]H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts”, Res. Chem. Inter., 20 (1994) 815-823.
[11]M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysts”, Chem. Rev., 95 (1995) 69-96.
[12]A. Sclafani, J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, J. Phys. Chem., 100 (1996) 13655-13661.
[13]D. Dvoranová, V. Brezová, M. Mazúr, M. A. Malati, “Investigations of metal-doped titanium dioxide photocatalysts”, Appl. Catal. B: Environ., 37 (2002) 91-105.
[14]M. Grätzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338-344.
[15]M. A. Fox, M. Y. Dulay, “Heterogeneous photocatalysis”, Chem. Rev., 93 (1993) 341-357.
[16]A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chem. Rev., 95 (1995) 735-758.
[17]高雄醫學大學醫藥暨應用化學系助理教授 王志光 以二氧化鈦為主的可見光觸媒發展基本原理,材料與技術月刊。
[18]大同公司網站http://www.tatung.com/b5/air/know/know1.htm.

[19]陳慧英,“溶膠-凝膠法在薄膜製備上之應用”,化工技術,無機薄膜之應用專輯,11月號,第80期,1999.
[20]台灣古登企業有限公司網站商周出版,台大化工系教授 呂宗昕著,圖解奈米科技與光觸媒 第六章 奈米光觸媒 第164頁。
[21]陳慧英,“溶膠-凝膠法在薄膜製備上之應用”,化工技術,無機薄膜之應用專輯,11月號,第80期,1999.
[22]S.Doeuff,M. Henry, C. Sanchez and J. Livage,“Hydrolysis Of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid”,J.Non-cryst.Solid, 89,1987,206-216.
[23]株式会社光触媒研究http://www.photocatalyst.co.jp/toha/toha.htm
[24]H.Dislich,Angew Chem.Int.Ed.Engl.,10,1971,363.
[25]呂宗昕,圖解奈米科技與光觸媒,商周,2003。
[26]X. Fu, W. A. Zeltner and M. A. Anderson, “The Gas-phase Photocatalytic Mineralization of Benzene on Porous Titania-Based Catalysts,”Appl. Catal. B: Environ., 6 (1995) 209-224.
[27]J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe and A. Fernandez, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz”,Appl. Catal. B: Environ., 13 (1997) 219-228.

[28]G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, “Photoassisted hydrogen production from a water ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2”, J. of Photochem. Photobiol. A: Chem., 89 (1995) 177-189.
[29]Myers, R. H. and Montgomery, D. C., Response Surfacl Methodology, process and product optimization Using Designed Experiments, 2nd edition, John Wiley & Sons. New York.
[30]H. D. Breuer, K. Wilke, “The influence of transition metal doping on the physical and photocatalytic properties of titania”,J. Photochem. Photobiol. A: Chem., 121 (1999) 49-53.
[31]T. Ohno, F. Tanigawa, K. Fujihara,“Photocatalytic Oxidation of Water by Visible Light UsingRuthenium-doped Titanium Dioxide Powder”, J. Photochem. Photobiol. A: Chem., 127 (1999) 107-110.
[32]J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon, J. S. Lee, “Formation of crystalline TiO2-xNx and its photocatalytic activity”, J. of Solid State Chem., 179 (2006) 1067-1075.
[33]X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge, “Photocatalytic activity of WOx-TiO2 under visible light irradiation”, J. Photochem. Photobiol. A: Chem., 141 (2001) 209-217.
[34]Y. S. Huang, S. S. Lin, C. R. Huang, M. C. Lee, T. E. Dann, F. Z.Chien, “Raman spectrum of IrO2”, Solid State Commun., 70 (1989) 517-522.
[35]J. L. Gole, J. D. Stout, C. Burda, Y. B. Lou, X. B. Chen: Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊