(3.238.99.243) 您好!臺灣時間:2021/05/17 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪梓彬
研究生(外文):Tzu-Pin Hung
論文名稱:常壓微波電漿轉化乙醇產氫之研究
論文名稱(外文):Production of Hydrogen from the Conversion of Ethanol in an Atmospheric-Pressure MW Plasma Environment
指導教授:蔡政賢蔡政賢引用關係
指導教授(外文):Cheng-Hsien Tsai
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:微波電漿乙醇電漿裂解部份氧化氫氣碳黑光學發射光譜
外文關鍵詞:Microwave DischargeEthanolPyrolysisPartial OxidationHydrogenCarbon blackOPtical Emission Spectra
相關次數:
  • 被引用被引用:4
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
乙醇 (C2H5OH) 具製造容易與易取得的特性,但不易轉化生成氫氣。本研究因此利用常壓微波電漿,進行乙醇裂解與部份氧化產製氫氣。實驗探討乙醇與氧氣之進料位置 (共振腔的上游或下游) 與氧氣/乙醇進流比例 (R),分別對乙醇轉化率、氫氣選擇率,以及能量消耗率之影響。並以質譜儀分析乙醇、氣相層析儀分析氫氣、傅立葉轉換紅外線光譜儀分析氣相副產物。並經由X光繞射分析儀、化學分析電子光譜儀與穿透式電子顯微鏡,鑑定固態產物的特徵。
實驗結果顯示,較高的R,乙醇轉化率較高;然而較低的R,且乙醇與氧氣均由上游進料下,可獲得較低的產氫能量消耗率。裂解反應顯示,在1.2 kW, [EtOH]in = 5.9%, 13.2 slm,且乙醇由上游進料下之乙醇轉化率為80.4%,氫氣選擇率為70.9%,產氫能量消耗率為14.3 eV/molecule-H2。 部份氧化乙醇則顯示,乙醇與氧氣均上游進料,且R = 0.5時,可達較裂解為佳之成果,轉化率達99.2%,氫氣選擇率達94.9%,產氫能量消耗率為8.46 eV/molecule-H2。
在氣態副產物方面,乙醇裂解或部份氧化以CO為主要產物,其他產物濃度除CO2外,其高低順序為C2H2 > C1 > CH4 > C2H4 > HCN。固態副產物方面,無論乙醇或氧氣進料位置為何,裂解或部份氧化,均以碳黑為主要產物,其結構屬於石墨-菱方晶,晶粒大約7 nm,顆粒大小介於10-30 nm。最後,光學發射光譜顯示,活性的N2物種於乙醇電漿反應中,扮演能量傳遞的主要角色之一,而H, OH, CH及N2之光譜強度與乙醇轉化率成正相關。
Ethanol (C2H5OH) is easily produced, while is difficult for producing hydrogen. In this study, plasma pyrolysis and partial oxidation of ethanol to hydrogen-rich fuel by using atmospheric-pressure microwave plasma were carried out. The effects of operational parameters, including the feeding position of reactants (upstream or downstream of resonance cavity) and the inlet O2/EtOH molar ratio, on the conversion of ethanol, selectivity of hydrogen, and energy consumption, were evaluated. A mass spectrometer, a gas chromatograph and a Fourier transform infrared spectrometer were used to determine the ethanol conversion and the concentrations of H2 and other gaseous by products. Moreover, XRD and TEM were used to indentify the solid product.
Experimental results showed that a higher ethanol conversion can be achieved at a higher O2/EtOH molar ratio. Moreover, both ethanol and oxygen were fed from the upstream of resonance cavity, the lower energy consumption was performed. By plasmalysis, the conversion of ethanol was 80.4% with a hydrogen selectivity of 70.9% and a energy consumption of 14.3 eV/molecule at 1.2 kW, [EtOH]in = 5.9%, 13.2 slm by feeding ethanol from the upstream. By partial oxidation of ethanol, when ethanol and oxygen were fed from the upstream at O2/EtOH = 0.5, the conversion could reach 99.2%, selectivity reached 94.9%, and the energy consumption rate of hydrogen was only 8.46 eV/molecule-H2.
The main gaseous byproduct was CO. The orders of concentration of other products were: C2H2> C1> CH4> C2H4> HCN, except CO2. The main solid products are carbon black The structure of carbon black particles was graphite-rhombohedral with crystal size of about 7 nm and a particle size of about 10-30 nm. Finally, optical emission spectroscopy showed that the activity of the N2 plasma species played a major role in energy transformation, as well as the intensities of H, OH, CH and N2 species emission were proportional to the ethanol conversion.
中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
第二章 文獻回顧 2
2-1 乙醇與氫氣 2
2-1-1 乙醇的特性、來源與用途 2
2-1-2 氫氣的特性與氫能源 3
2-2 觸媒轉化乙醇 4
2-1-1 觸媒轉化乙醇產氫 4
2-1-2 觸媒轉化乙醇產製其他燃料 7
2-3 電漿轉化乙醇 9
2-3-1 電漿裂解乙醇產氫 9
2-3-2 電漿蒸汽重組乙醇產氫 9
2-3-3 微波電漿 11
第三章 實驗設備及方法 14
3-1 研究設備 14
3-1-1 常壓微波電漿系統 14
產物分析系統 18
3-2 實驗流程與步驟 22
3-2-1 實驗方法 22
3-2-2 實驗流程與步驟 24
3-3 參數設定 26
第四章 結果與討論 28
4-1 電漿裂解及部分氧化乙醇產氫 28
4-1-1 轉化率及能量消耗率 28
4-1-2 產物分布 32
4-1-3 氫氣選擇率及產氫能量消耗率 34
4-1-4 含氫產物選擇率 41
4-1-5 含碳產物選擇率 46
4-1-6 碳黑特徵分析 50
4-2 微波電漿轉化乙醇之光學發射光譜分析 53
4-2-1 光學發射光譜之活性物種與躍遷之波長 53
4-2-2 乙醇之光學發射光譜分析 55
第五章 結論與建議 59
5-1 結論 59
5-2 建議 59
參考文獻 60
附錄 66
1.Alvarez, R., Quintero, M. C., Rodero, A., “Radical Distribution of Electron Desnity, Gas Temperature and Air Species in a Torch Kind Helium Plasma Produced at Atmospheric Pressure”, Spectrochim. Acta, Part B: At. Spectrosc., 59, 709-721, 2004.
2.Abed, S., Bouvier, A. J., Bouvier, A. M., Charlet, B., Leprince, P., “Spatial Distribution Population of Excited He, Ne and N, Levels in a Pulsed Microwave Plasma Generated by a Surface Wave”, J. Phys. D: Appl. Phys., 15, 595-604, 1982
3.Bertrand, P., Wiertz, V. B., Identification of the n-containing functionalities introduced at the surface of ammonia plasma treated carbon fibres by combined TOF SIMS and XPS", Unité de Physico-Chimie et de Phys. des Mat., Univ. Louvain 1348. Belgique.
4.Cavallaro, S., Chiodo, V., Vita, A., Freni S., “Hydrogen Production by Auto-Thermal Reforming of ethanol on Rh/Al2O3 Catalyst”, J. Power Sources, 123, 10–16, 2003
5.Chatei, H., Belmahi, M., Assouar, M. B., Le Brizoual, L., Bourson, P., Bougdira, J., “Growth and Characterisation of Carbon Nanostructures Obtained by MPACVD system Using CH4/CO2 Gas Mixture”, Diamond Relat. Mater, 15, 1041-1046, 2006.
6.Chaudhary, K., Inomata, K., Yoshimoto, M., Koinuma, H., “Open-air Silicon Etching by H2-He-CH4 Flowing Cold Plasma”, Mater. Lett., 57, 3406-3411, 2003.
7.Choi, Y. H., Kim, J. H., Paek, K. H., Ju, W. T., Hwang, Y. S., “Characteristics of Atmospheric Pressure N2 Cold Plasma Torch Using 60-Hz AC Power and its Application to Polymer Surface Modification”, Surf. Coat. Technol, 196, 319-324, 2005.
8.Cicala, G., Bruno, P., Losacco, A. M., Mattei, G., “Plasma Deposition of Hydrogenated Diamond-Like Carbon Films from CH4-Ar Mixtures”, Surf. Coat. Technol, 180-181, 222-226, 2004.
9.Coburn, J. W., Chen, M., “Optical Emission Spectroscopy of Reactive Plasma: a Method for Correlating Emission Intensities to Reactive Particle Density”, J. Appl. Phys., 51(6), 3134-3136. 1980.
10.de Lima, S. M., da Cruz, I. O., Jacobs, G., Davis, B. H., Mattos, L. V., Noronha, F. B., ”Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst” J Catal., 257, 356-368, 2008.
11.Deluga, G. A., Salge, J. R., Schmidt, L. D., Verykios, X. E., ” Renewable Hydrogen from Ethanol by Autothermal Reforming”, Science, 303(13), 2004.
12.Evans, J. F., Kuwana, T., “Introduction of functional groups onto carbon electrodes via treatement with radio- frequency plasmas”, Anal. Chem., 51(3), 358-365, 1979.
13.Fan, W. Y., Knewstubb, P. F., Kaning, M., Mechold, L., Ropcke, J., Davies, P. B., “A Diode Laser and Modeling Study of Mixed (CH4-H2-O2) AC Plasmas”, J. Phys. Chem. A., 103, 4118-4128, 1999.
14.Fang, S. B. , Jiang Y. Y. , Wu, Y. P., "Effects of Nitrogen on The Carbon Anode of Lithium Secondary Battery", Solid State Ionics., 120, 117-123, 1999.
15.Folkesson, B., Sadlej, J., Larsson, R., "On the relation between core electron binding energies and atomic charge", Spectrosc Lett., 24(5), 671-680, 1991.
16.Goujon, M., Belmonte, T., Henrion, G., “OES and FTIR Diagnostic of HMDSO/O2 Gas Mixtures for SiOx Deposition Assited by RF Plasma”, Surf. Coat. Technol, 188-189, 756-761, 2004.
17.Heintze, M., Magureanu, M., Kettlitz, M., “Mechanism of C2 Hydrocarbon Formation from Methane in a Pulsed Microwave Plasma”, J. Appl. Phys., 92, 7022-7031, 2002.
18.Hsueh, H. P., McGrath, R.T., Ji, B., Felker, B. S., Langan, J. G.., Karwacki, E. J., “Ion Energy Distribution and Optical Emission Spectra in NF3-based Process Chamber Plasma”, J. Vac. Sci. Technol. B, 19(4), 1346-1357, 2001.
19.Hueso, J. L., Gonzalez-Elipe, A. R., Cotrino, J., Caballero, A., “Plasma Chemistry of NO in Complex Mixtures Excited with a Surfatron Launcher”, J. Phys. Chem. A, 109, 4930-4938, 2005.
20.Iwasaki, Y., Liu, J. Q., Zhang, J., Kitajima, T., Sakurai M. and Kameyama, H., “Hydrogen Production from Ethanol Using A Plasma Reactor with An Alumite Catalyst Electrode”, J. Chem. Eng. Jpn., 39(2), 216-228, 2006.
21.Jamroz, P., Zyrnicki, W., “Optical Emission Characteristics of Glow Discharge in the N2–H2–Sn(CH3)4 and N2–Ar–Sn(CH3)4 Mixtures”, Surf. Coat. Technol, 201, 1444-1453, 2006.
22.Jeong, B. Y., Kim, M. H., “Effects of the Process Parameters on the Layer Formation Behavior of Plasma Nitrided Steel”, Surf. Coat. Technol., 141, 182-186, 2001.
23.John, P., Rabeau, J. R., Wilson, J. I. B., “The Cavity Ring-Down Spectroscopy of C2 in a Microwave Plasma”, Diamond Relat. Mater., 11, 608-611, 2002.
24.Jones, C., Sammann, E., “The effect of low power plasmas on carbon fibre surfaces”, Carbon, 28(4), 509-514, 1990.
25.Kabashima, H., Einaga, H., Futamura, S., “Hydrogen Generation From Water, Methane, and Methanol With Nonthermal Plasma”, IEEE trans. ind. appl., 39(2), 340-345, 2003.
26.Kim, S. S., Lee, H., Na, B. K., Song, H. K., “Plasma-Assisted Reduction of Supported Metal Catalyst Using Atmospheric Dielectric-Barrier Discharge”, Catal. Today., 89, 193-200, 2004.
27.Kim, Y. S., Jung, D., Min, S. K., “Effects of N2 Plasma Treatment of Titanium Nitride/Borophosphosilicate Glass Patterned Substrates on Metal Organic Chemical Vapor Deposition of Copper”, Thin Solid Films, 349, 36-42, 1999.
28.Kraus, M., Egli, W., Haffner, K., Eliasson, B., Kogelschatz, U., Wokaun, A., “Investigation of Mechanistic Aspects of the Catalytic CO2 Reforming of Methane in a Dielectric-Barrier Discharge Using Optical Emission Spectroscopy and Kinetic Modeling”, Phys. Chem. Chem. Phys., 4, 668-675, 2002.
29.Lasorsa, C., Morando, P. J., Rodrigo, A., “Effects of The Plasma Oxygen Concentration on The Formation of SiOxCy Films by Low Temperature PECVD”, Surf. Coat. Technol, 194, 42-47, 2005.
30.Li, H. Q., Zou, J. J., Zhang, Y. P., Liu, C. J., Chem. Let., “Novel Plasma Methanol Decomposition to Hydrogen Using Corona Discharges”, 33(6), 2004.
31.Li, W. L., Wang, H., Ren, Z. Y., Wang, G. , Bai, J. B., “Co-production of hydrogen and multi-wall carbon nanotubes from ethanol decomposition over Fe/Al2O3 catalysts”, Appl. Catal. B-Environ., 84, 433–439, 2008.
32.Lide, D. R. ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, 2005.
33.Liguras, D. K., Goundani, K., Verykios, X. E., “Production of Hydrogen for Fuel Cells by Catalytic Partial Oxidation of Ethanol over Structured Ni Catalysts”, Journal of Power Sources, 130, 30-37, 2004.
34.Lin, W. H., Liu, Y. C., Chang, H. F., “Hydrogen Production from Oxidative Steam Reforming of Ethanol in a Palladium–Silver Alloy Composite Membrane Reactor”, J. Chin. Inst. Chem. Eng., 39, 435–440, 2008.
35.Liu, D., Xu, Y., Yang, X., Yu, S., Sun, Q., Zhu, A., Ma, T., “Diagnosis of Dielectric Barrier Discharge CH4 Plasmas for Diamond-Like Carbon Film Deposition”, Diamond Relat. Mater., 11, 1491-1495, 2002.
36.Liu S., Zhang K. Fang Lining, and Yongdan Li,” Thermodynamic Analysis of Hydrogen Production from Oxidative Steam Reforming of Ethanol”, Energy Fuels, 22, 1365–1370, 2008.
37.Losurdo, M., Capezzuto, P., Bruno, G., “Chemistry and Kinetics of the GaN Formation by Plasma Nitridation of GaAs : An in situ Real-Time Ellipsometric Study”, Physical Review B, 58, 878-888, 1998.
38.Ma, H., Wang, Q., Qian, D., Gong, L., Zhang, W., “The Utilization of Acid-Tolerant Bacteria on Ethanol Production from Kitchen Garbage”, Renewable Energy, 34, 1466-1470, 2009.
39.Madhu Kumar, P., Badrinarayanan, S., Sastry, M., “Nanocrystalline TiO2 Studied by Optical, FTIR and X-ray Photoelectron Spectroscopy: Correlation to Presence of Surface States”, Thin Solid Films, 358, 122-130, 2000.
40.Marinov N. M., “A detailed chemical kinetic model for high temperature ethanol oxidation”, Int. J. Chem. Kinet., 31(3), 183-220, 1999.
41.Mattos, L. V., Noronha, F. B., “Hydrogen Production for Fuel Cell Applications by Ethanol Partial Oxidation on Pt/CeO2 Catalysts: The Effect of The Reaction Conditions and Reaction Mechanism”, J. Catal., 233, 453-463, 2005.
42.MSDS (C2H5OH) (http://www.iosh.gov.tw/userfiles/file/database/material_safety /msds 0049.pdf)
43.MSDS (H2) (http://www.iosh.gov.tw/data/f11/n70.htm)
44.NIST (http://kinetics.nist.gov/index.php)
45.Obraztsov, A. N., Zolotukhin, A. A., Ustinov, A. O., Volkov, A. P., Svirko, Y., Jefimovs, K., “DC Discharge Plasma Studies for Nanostructured Carbon CVD”, Diamond Relat. Mater, 12, 917-920, 2003.
46.Rabenstein,G., Hacker, V., “Hydrogen for Fuel Cells from Ethanol by Steam-Reforming, Partial-Oxidation and Combined Auto-thermal Reforming: A Thermodynamic Analysis”, J. Power Sources, 185, 1293–1304, 2008.
47.Rie, K. T., Menthe, E., Wohle, J., “Optimization and Control of a Plasma Carburizing Proess by Means of Optical Emission Spectroscopy”, Surf. Coat. Tech., 98, 1192-1198, 1998.
48.Sekine, Y., Asai, S., Urasaki, K., Matsukata, M., Kikuchi, E., Kado, S., Haga, F., “Hydrogen Production from Biomass-Ethanol at Ambient Temperature with Novel Diaphragm Reactor”, Chem. lett., 34(5), 2005.
49.Sekine, Y., Urasaki, K., Asai, S., Matsukata, M., Kikuchi, E., Kado, S., “A Novel Method for Hydrogen Production from Liquid Ethanol/Water at Room Temperature”, Chem. Commun., 78-79, 2005.
50.Sekine, Y., Urasaki, K., Kado, S., Matsukata, M., Kikuchi E., “Nonequilibrium Pulsed Discharge: A Novel Method for Steam Reforming of Hydrocarbons or Alcohols”, Energy Fuel, 18, 455-459, 2004.
51.Tanabe, S., Matsuguma, H., Okitsu, K. and Matsumoto, H., “Generation of Hydrogen from Methanol in a Dielectric-Barrier Discharge-Plasma System”, Chem. Let., 1116-1117, 2000.
52.Tappero, F., Abe, Y., Takagi, Y., Tanaka, Y., Maizza, G., “Wireless Optical Diagnostic Apparatus for Analyzing Diamond Thin Film CVD Process Under High Gravity Conditions”, Diamond Relat. Mater, 13, 2063-2070, 2004.
53.Timmermans, E. A. H., Jonkers, J., Rodero, A., Quintero, M. C., Sola, A., Gamero, A., Schram, D. C., Mullen van der, J. A. M., “The Behavior of Molecules in Microwave-Induced Plasma Studies by Optical Emission Spectroscopy. 2: Plasma at Reduced Pressure”, Spectrochim. Acta Part B At Spectrosc., 54, 1085-1098, 1999.
54.Tsai, C. H., Hsieh, T. H., “New Approach for Methane Conversion Using a RF Discharge Reactor. 1. Influences of Operating Conditions on Syngas Production”, Ind. Eng. Chem. Res., 43, 4043-4047, 2004.
55.Tsai, C. H., Hsieh, T. H., Shih, M., Huang, Y. J., Wei, T. C., “Partial Oxidation of Methane to Synthesis Gas via a Microwave Plasma Torch”, AIChE J., 51, 2853-2858, 2005.
56.Tsai, H. L., Wang, C. S., Duc, P. M., “Control Design of Ethanol Steam Reforming in Thermal Plasma Reformer”, 16th IEEE International Conference on Control Applications, Singapore, 2007.
57.Voca, N., Varga, B., Kricka, T., Curic, D., Jurisic, V., Matin, A., “Progress in Ethanol Production from Corn Kernel by Applying Cooking Per-Treatment”, Bioresource tech., 2712-2718, 2009.
58.Wang, W., Wang Y., “Thermodynamic Analysis of Hydrogen Production via Partial Oxidation of Ethanol”, Int. J. Hydrogen Energy, 33, 5035-5044, 2008.
59.Wagner, C. D., Moulder, J. F., Davis, L. E., Riggs, W. M., "Handbook of X-ray Photoelectron Spectroscopy", Perking-Elmer Corporation, Physical Electronics Division.
60.Woo, Y. S., Jeon, D. Y., Han, I. T., Lee, N. S., Jung, J. E. Kim, J. M., “In situ Diagnosis of Chemical Species for the Growth of Carbon Nanotubes in Microwave Plasma-Enhanced Chemical Vapor Dposition”, Diamond Relat. Mater, 11, 59-66, 2002.
61.Wilkins, M. R., “Effect of Orange Peel Oil on Ethanol Production by Zymomonas Mobilis”, Biomass Bioenergy, 33, 538-541, 2009.
62.Yan, Z.C., Chen, L., and Wang, H. L., “Hydrogen Generation by Glow Discharge Plasma Electrolysis of Ethanol Solutions”, J. Phys. D: Appl. Phys., 41(155205), 1-7, 2008.
63.Yanguas-Gil, A., Hueso, J. L., Cotrino, J., Caballero, A., González-Elipe, A. R., “Reforming of Ethanol in a Microwave Surface-wave Plasma Discharge”, Appl. Phys. Lett., 85(18), 2004.
64.Yeh, C. M., Chen, C. H., Gan, J. Y., Kou, C. S., Hwang, J., “Enhancement of the c-axis Texture of Aluminum Nitride by An Inductively Coupled Plasma Reactive Sputtering Process”, Thin Solid Films, 483, 6-9, 2005.
65.Zambrano, G., Riascos, H., Prieto, P., Restrepo, E., Devia, A., Rincon, C., “Optical Emission Spectroscopy Study of R.F. Magnetron Sputtering Discharge Used for Multilayers Thin Film Deposition”, Surf. Coat. Tech., 172, 144-149, 2003.
66.王彥文,常壓微波電漿裂解甲醉產氫之研究,國立高雄應用科技大學化學工程系,專題報告,2009。
67.毛宗強,“無限的氫能-未來能源”,中國自然雜誌,第28期第1卷,14-18,2005。
68.林祐生、李文乾,“生質酒精”,科學發展,第433期,20-25,2009。
69.柯文賢,“未來的氫能經濟”,科學發展,第399期,68-75,2006。
70.蔡政賢,含硫氣體化合物於高週波電漿中之反應機制,國立成功大學環境工程學系,博士論文,2001。
71.陳冠廷,常壓微波電漿裂解與蒸氣重組甲烷產氫之研究,國立高雄應用科技大學化學工程系,碩士論文,2006。
72.高正雄,「電漿化學」,復漢出版社,1997。
73.謝惠子,“新尖兵概念-淺談氫氣”,能源報導,2005。
74.蔡蘊明,http://www.chemedu.ch.ntu.edu.tw/lecture1/GC.htm
75.賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊