(3.238.130.97) 您好!臺灣時間:2021/05/18 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:毛志豪
研究生(外文):Chih-Hao Mao
論文名稱:製備摻雜氧化鎢之二氧化鈦/碳複合材料與光催化特性
論文名稱(外文):Preparations and photocatalytic characterization of tungsten oxide-doped titanium dioxide/carbon composites
指導教授:鄭 錫 勳高 立 衡李 安 成
指導教授(外文):Shi-Shiun ChengLi-Heng KaoAn-Cheng Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:143
中文關鍵詞:光觸媒溶膠凝膠法摻雜
外文關鍵詞:PhotocatalystSol-Gel methoddoped
相關次數:
  • 被引用被引用:2
  • 點閱點閱:886
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦是光觸媒中最主要的研究項目。其具有高光催化活性,價格低廉與製備容易,但對於可見光範圍的光降解效果顯示較差。本研究致力於研發具高光催化活性之二氧化鈦光觸媒。利用溶膠凝膠製備具介孔的二氧化鈦,並在製備過程中摻雜氧化鎢,與熔融包覆對光觸媒進行不同形式改質。並採用X-ray繞射儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)、拉曼光譜儀(Raman)、熱重分析儀(TGA)、比表面積量測儀(BET)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)等儀器對材料做特性分析;且採用所改質的光觸媒對亞甲基藍、甲基橙以及若丹明染料進行光降解反應,來探討其光催化活性。並與市售P-25及ST-01做比較。
實驗結果顯示,第一部份,改質後的二氧化鈦能有效地降解亞甲基藍,且摻雜鎢之光觸媒的催化速率比起純二氧化鈦高出許多。第二部份,採用聚乙烯醇與鎢同時對二氧化鈦做改質,成功地以碳對二氧化鈦進行包覆,且大幅增加其吸附能力,並且對亞甲基藍具有良好的吸附和光降解能力。
TiO2 is the most studied photocatalyst. High photocatalytic activity, low cost and easily prepared, but it shows negligible visible-light activity.
This researchs mainly enhance the effect of TiO2 photocatalytic activities. Mesoporous titanium dioxide were prepared via sol-gel method, and in the prepared process doped tungsten atoms and carbon coating of photocatalyst was successful to prepared.
The synthesized sample was characterized by X-ray Diffraction (XRD), Raman scattering spectroscopy (Raman), Fourier Transform Infrared Spectrometer (FTIR), Brunauer–Emmett–Teller (BET), Thermo Gravimetric analysis (TGA), Field Emission Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM).
The photocatalyic activity of the synthesized composite particles was tested by photodegradation of Methylene Bule (MB) and Methyl Orange (MO) and Rhodamine B under UV illumination (365 nm) and compared with that of commerce photocatalyst P-25, ST-01.
The result shows, the first part, doped titanium dioxide has photocatalytic activity such as photodegradations of Methylene Bule, which are much higher than those with pure titanium dioxide.
The second part, PVA and tungsten on the same time to improve titanium dioxide, carbon coating of photocatalyst was successfully carried out by heating a powder mixture of poly(vinyl alcohol) and TiO2/WOx under N2 gas flow at temperature above 700 oC. Carbonization method was possessing high adsorbability, and have good adsorption and photodegradation ability to the Methylene Bule.
總目錄

中文摘要 III
英文摘要 IV
致謝 VI
表目錄 IX
圖目錄 X

第一章 緒論 1
第二章 基本原理與文獻回顧 2
2-1 光觸媒簡介 2
2-1-1 二氧化鈦 3
2-1-2 二氧化鈦光催化反應原理 6
2-1-3 二氧化鈦之製備 8
2-1-4 影響二氧化鈦光催化反應的因素 12
2-1-5 二氧化鈦光觸媒的改質方式 14
2-1-6 二氧化鈦的應用 15
2-2 活性碳特性 18
2-2-1 活性碳纖維與傳統活性碳之比較 21
2-2-2 活性碳之吸附機制 22
2-2-3 吸附擴散動力分析 24
2-2-4 影響吸附之因素 24
2-2-5 恆溫吸附模式 25
2-2-6 二氧化鈦及碳之協同作用 27
2-3 二氧化鈦光觸媒之發展 28
2-4 二氧化鈦光觸媒以WOx改質之發展 34
2-5 研究動機 40
第三章 實驗部份 41
3-1 實驗材料 41
3-2 實驗儀器 42
3-3 光觸媒之製備與改質步驟 45
3-3-1 純TiO2之製備 45
3-3-2 WOx-TiO2之製備 45
3-3-3 WOx-TiO2/C之製備 45
3-4 光催化活性實驗 51
3-4-1 甲基橙性質 51
3-4-2 亞甲基藍性質 51
3-4-3 若丹明性質 52
第四章 結果與討論 57
4-1 WOx-TiO2光觸媒之特性分析與光催化測試 57
4-1-1 材料組成及特性鑑定 57
4-1-2 光催化活性測試 60
4-1-3 結論 83
4-2 WxT/Cy光觸媒之特性分析與光催化測試 84
4-2-1 材料組成及特性鑑定 84
4-2-2 光催化活性測試 87
4-2-3 結論 111
4-3 本研究所製備的各種光觸媒其光催化效果之探討 112
第五章 總結 115
未來展望 117
參考文獻 118

表目錄
表2-1 為銳鈦礦與金紅石物理性質之比較 6
表2-2 製備TiO2粉體主要方法 9
表2-3 為活性碳孔隙大小分布之情形 18
表2-4 物理吸附與化學吸附之差異 23
表3-1 以溶膠-凝膠法製備出WOx -TiO2之材料和PVA混合經碳化後所得之WOx-TiO2/C樣品代碼 49
表3-2 甲基橙、亞甲基藍、若丹明污染物的基本特性 54
表4-1 為添加不同 Na2WO4.2H2O量改質TiO2之晶粒大小 63
表4-2 為添加不同 Na2WO4.2H2O量改質TiO2之比表面積 71
表4-3 4 mole % Na2WO4.2H2O與不同PVA量對TiO2進行改質之晶粒大小 90
表4-4 4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2改質之比表面積 95

圖目錄
圖2-1 為常見半導體之能隙圖 3
圖2-2 二氧化鈦相圖 4
圖2-3 銳鈦礦與金紅石之TiO2晶體結構 5
圖2-4 二氧化鈦分子的鍵結方式 5
圖2-5 二氧化鈦光催化反應機制 8
圖2-6 二氧化鈦之應用範圍 17
圖2-7 活性碳表面可能之含氧酸性官能基 20
圖2-8 活性碳表面可能之含氧鹼性官能基 20
圖2-9 IUPAC分類歸納出來的六類恆溫吸附線示意圖 26
圖2-10 有機污染物在碳塗覆TiO2表面上的吸附和降解過程 27
圖3-1 純TiO2之製備流程圖 46
圖3-2 WOx-TiO2之製備流程圖 47
圖3-3 WOx-TiO2/C之製備流程圖 48
圖3-4 碳化高溫爐裝置圖 50
圖3-5 紫外光燈源的光學發射光譜(短波長254 nm) 53
圖3-6 紫外光燈源的光學發射光譜(長波長365 nm) 53
圖3-7 甲基橙之UV-Visible吸收光譜圖 55
圖3-8 亞甲基藍之UV-Visible吸收光譜圖 55
圖3-8 若丹明之UV-Visible吸收光譜圖 56
圖4-1 添加不同Na2WO4.2H2O莫耳百分比所製備之WxT與TiO2經700 oC氮氣環境下恆溫鍛燒1 hr之X-ray繞射圖 62
圖4-2 添加不同Na2WO4.2H2O莫耳百分比所製備之WxT與TiO2經700 oC氮氣環境下恆溫鍛燒1 hr之Raman光譜儀 64
圖4-3 添加不同Na2WO4.2H2O莫耳百分比所製備之WxT與TiO2經700 oC氮氣環境下恆溫鍛燒1 hr之SEM圖 65
圖4-4 TiO2之SEM-EDS圖 67
圖4-5 W4T之SEM-EDS圖 68
圖4-6 添加不同Na2WO4.2H2O莫耳百分比所製備之WxT與TiO2經700 oC 氮氣環境下恆溫鍛燒1 hr之熱重損失分析圖 69
圖4-7 添加不同Na2WO4.2H2O莫耳百分比所製備之WxT與TiO2經700 oC 氮氣環境下恆溫鍛燒1 hr之氮氣吸附-脫附恆溫曲線圖 70
圖4-8 為添加不同Na2WO4.2H2O量所製備改質之TiO2,經700 oC氮氣環境下恆溫鍛燒1 hr後之孔徑分布圖 72
圖4-9 Na2WO4.2H2O添加量對材料比表面積與孔容之影響 73
圖4-10 TiO2之TEM 圖 74
圖4-11 W4T之TEM 圖 75
圖4-12 為添加不同Na2WO4.2H2O量所製備改質之TiO2光降解亞甲基藍之效率圖 76
圖4-13 為市售光觸媒與改質之觸媒以亞甲基藍為污染物進行光降解效率評估 77
圖4-14 為市售光觸媒與改質之觸媒以甲基橙為污染物進行光降解效率評估 78
圖4-15 為市售光觸媒與改質之觸媒以若丹明為污染物進行光降解效率評估 79
圖4-16 W4T光降解亞甲基藍之效率圖 80
圖4-17 W4T光降解甲基橙之效率圖 81
圖4-18 W4T光降解若丹明之效率圖 82
圖4-19 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質,於氮氣環境下以700 oC恆溫鍛燒 1 hr之XRD圖 89
圖4-20 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質,於氮氣環境下以700 oC恆溫鍛燒 1 hr之FT-IR圖譜 91
圖4-21 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質,於氮氣環境下以 700 oC 恆溫鍛燒1 hr之Raman光譜儀 92
圖4-22 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質之熱重分析圖 93
圖4-23 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質,於氮氣環境下以700 oC恆溫鍛燒1 hr之氮氣吸附-脫附恆溫曲線圖 94
圖4-24 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質,於氮氣環境下以700 oC恆溫鍛燒1 hr之孔徑分布圖 96
圖4-25 PVA 添加量對材料比表面積與孔容之影響 97
圖4-26 為4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2進行改質,於氮氣環境下以700 oC恆溫鍛燒1 hr之SEM圖 98
圖4-27 W4T/C5之SEM-EDS圖 99
圖4-28 W4T/C5之SEM-Mapping圖 100
圖4-29 W4T/C5之TEM圖 101
圖4-30 4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2改質其光降解亞甲基藍之效率圖 102
圖4-31 W4T/C7.5光降解亞甲基藍之效率圖 103
圖4-32 W4T/C10光降解亞甲基藍之效率圖 104
圖4-33 4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2改質其光降解甲基橙之效率圖 105
圖4-34 W4T/C7.5光降解甲基橙之效率圖 106
圖4-35 W4T/C10光降解甲基橙之效率圖 107
圖4-36 4 mole % Na2WO4.2H2O與不同PVA量同時對TiO2改質其光降解若丹明之效率圖 108
圖4-37 W4T/C7.5光降解若丹明之效率圖 109
圖4-38 W4T/C10光降解若丹明之效率圖 110
圖4-39 各種改質光觸媒與市售光觸媒光降解亞甲基藍之效率圖 112
圖4-40 各種改質光觸媒與市售光觸媒光降解甲基橙之效率圖 113
圖4-41 各種改質光觸媒與市售光觸媒光降解若丹明之效率圖 114
【1】A. Fujishima, T. N. Rao, D. A. Tryk, 2000, “Titanium Dioxide Photocatalysis”, J. Photochem. Photobiol. C-Photochem. Rev., vol. 1, pp. 1-21.
【2】K. Sunda, Y. Kikuchi, K. Hashimoto, 1998, “Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysis”, Environ. Sci. Technol., vol. 32, pp. 726-734.
【3】H. Sakai, R. X. Cai, R. Baba, K. Hashimoto, Y. Kubota, A. Fujishima, 1993, “Detection of Intermediates Formed at the Surface of Photo-Excited TiO2 Film Electrode Using Microelectrode Photocatalytic”, Purification and Treatment of Water and Air, pp. 651-657.
【4】呂宗昕 圖解奈米科技與光觸媒 商周出版 2003.
【5】J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, 1987, “Structural-Electronic Relationships In Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., vol. 109, pp. 36-39.
【6】A . Fujishima, K. Hashimoto, T. Watanabe, 1999, “TiO2 Photocatalysis Fundamentals and Application ”, Jpn. J. Appl. Phys. ,vol.125, pp. 128.
【7】A. L. Linsebigler, G. Lu, J. T. Yates, 1995, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., vol. 95, pp. 735-758.
【8】K. Okamoto, Y. Yasunori, T. Masashi, T. Akira, 1985, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Power”, Bull. Chem. Soc. Jpn., vol.58, pp. 2015-2022.
【9】J. Y. Chen, L. Gao, J. H. Huang, 1996, “Prepation of superfine titania powdersby the hydrolsis of titania alkoxide”, J. Mater. Sci., vol. 31, pp.3497-3500.
【10】K-N P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo, H. Nagamoto, S. Morooka, 1992, “Densification of nanostructured titania assisted by a phase transformation”, Nature, vol. 358, pp.48-51.
【11】D. Vorkapic, T. Matsoukas, 1998, “Effect of Temperature and Alcohols in the Preparation of Titania Nanoparticles from Alkoxides”, J. Am. Ceram. Soc., vol. 81, pp.2815-2820.
【12】H. K. Park, D. K. Kim, C. H. Kim, 1997, “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4”, J. Am. Ceram. Soc., vol. 80, pp. 743-749.
【13】H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, S. Deki, 1998, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, J. Mater. Chem., vol. 8, pp. 2019-2024.
【14】J. L. Look, C. F. Zukoski, 1995, “Colloidal stability and titania precipitate morphology: influence of short-range repulsions”, J. Am. Ceram. Soc., vol. 78, pp. 21-32.
【15】徐明霞,徐廷獻,劉寧,1997,“由TiOSO4水解-沉澱法制備TiO2薄膜”,硅酸鹽學報,第25卷,頁209-213。
【16】M. K. Akhtar, S. E. Pratsinis, S. V. R. Mastrangelo, 1992, “Dopants in Vapor Phase Synthesis of Titania Powders”, J. Am. Ceram. Soc., vol. 75, pp. 3408-3416 .
【17】T. Sasamoto, S. Enomoto, Z. Shimoda et al., J. Ceram. Soc. Jpn. , 1993, vol. 101, pp. 230-232.
【18】M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, Turkovic, K. Furic, 1996, “Microstructure of nanosized TiO2 obtained by sol-gel synth esi”, Mater. Lett., vol. 28, pp. 225-229.
【19】A. M. Tonejc, A. Turkovic, M. Gotic, S. Music, M. Vukovic, R. Trojko, A. Tonejc, 1997, “HREM, TEM and XRD observation of nanocrystalline phases in TiO2 obtained by sol-gel method”, Mater. Lett., vol. 31, pp. 127-131.
【20】S. Yin, Y. Inoue, S Uchida, Y. Fujishiro, T. Sato, 1998, “Crystallization of titania in liquid media and photochemical properties of crystallized titania”, J. Mater. Res., vol. 13, pp. 844-847.
【21】P. Arnal, R. J. P. Corriu, D. Leclercq, P. H. Mutin, A. Vioux, 1996, “Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods”, J. Mater. Chem., vol. 6, pp.1925-1932.
【22】R. R. Bacsa, M. Gratzel, 1996, “Rutile formation in Hydrothermally crystallized nanosized Titania”, J. Am. Ceram. Soc., vol. 79, pp. 2185-2188.
【23】H. Cheng, J. Ma, Z. Zhao, L. Qi, 1995, “Hydrothermal preparation of uniform nanosize rutile and anatase particles”, Chem. Mat., vol. 7, pp. 663-671.
【24】C. C. Wang, J. Y. Ying, 1999, “Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals”, Chem. Mat., 11, pp. 3113-3120.
【25】T. Nagase, T. Edina, T. Iwasaki, H. Hayashi, Y. Onodera, M. Chatterjee., 1999, “Hydrothermal synthesis of brookite”, Chem. Lett., pp. 911-912.
【26】M. R. Ayers, A. Hunt, 1998, “Titanium oxide aerogels prepared from titanium metal and hydrogen peroxide”, Mater. Lett., vol. 34, pp. 290-293.
【27】高濂,鄭珊,張青紅,2004,奈米二氧化鈦光催化材料及應用,五南圖書股份有限公司社。
【28】A. Sclafani, J. H. Herrmann, 1996, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J. Phys. Chem., vol. 100, pp. 13655-13661.
【29】A. Sclafani, L. Palmisano, M. Schiavello, 1990, “Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion”, J. Phys. Chem., vol. 94, pp. 829-832.
【30】M. R. Dhananjeyan, R. Annapoorani, R. Renganathan, 1997, “An Investigation on ZnO Photocatalysed Oxidation of Uracil”, J. Photochem. Photobiol. A-Chem., vol. 109, pp. 147-153.
【31】V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, 1990, “Doped TiO2 Nanomaterials and Applications”, Appl. Catal. B-Environ., vol. 69, pp. 323-340.
【32】H. Gupta, S. Tanaka, 1995, “Photocatalytic mineralisation of perchloroethylene using titanium dioxide”, Water Sci. Technol., vol. 31, pp. 47-54.
【33】L. B. Reutergardh, M. Iangphasuk, 1997, “Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis”, Chemosphere, vol. 35, pp. 585-596.
【34】C. K. Chan, W. Guo, J. F. Porter, Y. G. Li, C. M. Chan, 1999, “Effects of calcination on the Microstructures and Photocatalytic Properties of Nanosized Titanium Dioxide Powders Prepared by Vapor Hydrolysis”, J. Am. Ceram. Soc., vol. 82, pp. 566-572.
【35】M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, 1987, “Photocatalytic Hydrogenation of CH3CCH with H2O on small-particle TiO2: size Quantization Effects and Reaction Intermediates”, J. Phys. Chem. A, vol. 91, pp. 4305-4310.
【36】M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, 1995 , “Environmental applications of semiconductor photocatalysts”, Chem. Rev., vol. 95, pp. 69-96.
【37】X. Fu, W. A. Zeltner, M. A. Anderson, 1995, “The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts”, Appl. Catal. B-Environ., vol. 6, pp. 209-224.
【38】P. Papaefthimiou, T. Ioannides, X. E. Verykios, 1998, “Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs)”, Appl. Catal. B-Environ., vol. 15, pp. 75-92.
【39】莊達人,1997,VLSI製造技術,高立圖書有限公司。
【40】K. E. Karakitsou, X. E. Verykios, 1993, “Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalytst for Water Cleavage”, J. Phys. Chem., vol. 97, pp. 1184-1189.
【41】C. He, Y. Yu, X. Hu, A. Larbot, 2002, “Influence of silver doping on the photocatalytic activity of titania films”, Appl. Surf. Sci., vol. 200, pp. 239-247.
【42】Y. Liu, C. Liu, Q. h. Rong, Z. Zhang, 2003, “Characteristics of the silver-doped TiO2 nanoparticles”, Appl. Surf. Sci., vol. 220, pp. 7-11.
【43】S. X. Liu, Z. P. Qu, X. W. Han, C. L. Sun, 2004, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide”, Catal. Today, vol. 93-95, pp. 877-884.
【44】S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, “Investigation on sol–gel synthesized Ag-doped TiO2 cermet thin films”, 2005, Thin Solid Films, vol.474, pp. 245-249.
【45】I. H. Tseng, W. C. Chang, Jeffrey C. S. Wu, 2002, “Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts”, Appl. Catal. B-Environ., vol. 37, pp. 37-48.
【46】N. L. Wu, M. S. Lee, 2004, “Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution”, Int. J. Hydrog. Energy, vol. 29, pp. 1601-1605.
【47】H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Slamet, 2005, “Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method”, Catal. Commun., vol. 6, pp. 313-319.
【48】X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge, 2001, “Photocatalytic activity of WOx-TiO2 under visible light irradiation”, J. Photochem. Photobiol. A-Chem., vol. 141, pp. 209-217.
【49】H. Yang, D. Zhang, L. Wang, 2002, “Synthesis and characterization of tungsten oxide-doped titania nanocrystallites”, Mater. Lett., vol. 57, pp. 674-678.
【50】A. Rampaul, I. P. Parkin, S. A. O’Neill, J. DeSouza, A. Mills, N. Elliott, 2003, “Titania and tungsten doped titania thin films on glass; active photocatalysts”, Polyhedron, vol. 22, pp. 35-44.
【51】A. V. Vorontsov, E. N. Savinov, J. Zhensheng, 1999, “Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation”, J. Photochem. Photobiol. A-Chem., vol. 125, pp. 113-117.
【52】F. B. Li, X. Z. Li, 2002 , “Identification of dimethylchloroarsine near a former herbicide factory by headspace solid-phase microextraction gas chromatography-mass spectrometry”, Chemosphere, vol. 48 , pp. 1103-1111.
【53】O. Harizanov, A. Harizanova, 2000, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings”, Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195.
【54】W. Que, Z. Sun, Y. Zhou, Y. L. Lam, Y.C. Chan, C. H. Kam, 2000, “Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol-gel processing”, Thin Solid Films, vol. 359, pp. 177-183.
【55】O. Harizanov, T. Ivanova, A. Harizanova, 2001, “Study of sol–gel TiO2 and TiO2-MnO obtained from a peptized solution”, Mater. Lett., vol. 49, pp. 165-171.
【56】J. C. Yu, J. Yu, L. Zhang, W. Hoa, 2002, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders”, J. Photochem. Photobiol. A-Chem., vol. 148, pp. 263-271.
【57】田中義身,2000,光觸媒技術研討會,經濟部。
【58】R. Cai, Y. Kubota, T. Shuin, H. Sakai, A. Fujishima, 1992, “Induction of Cytotoxicity by Photoexcited TiO2 Particles”, Cancer. Res., vol. 52, pp. 23-46.
【59】楊沛澤、黃宜漢,1998,“活性碳吸附於中鋼廢水處理運用之實例”,技術與訓練,vol. 23, pp. 165-176。
【60】C. C. Lin, 1982, “Application of Granular Activated Carbon for Water and Wastewater Purification”, Ph.D. Dissertation, University of Texas at Dallas, USA.
【61】I. C. Lewis, 1982, “Chemistry of carbonization”, Carbon, vol. 20, pp. 519-527.
【62】林菁菁,2000,“PAN 系活性碳纖維鍍銀之物性、微結構與抗菌能力研究”, 逢甲大學材料科學研究所碩士論文。
【63】邱正宏,1993,“吸附於活性碳表面揮發性有機物之熱脫附動力學研究”,國立中山大學環境工程所,碩士論文。
【64】蔣本基,1996,“活性碳物理化學特性對VOCs吸附之影響”,工業污染防治,第58期。
【65】楊英傑,1992,“以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究”,國立成功大學化學工程所,碩士論文。
【66】劉瑞華,1998,“低濃度揮發性有機物在吸附劑中之傳輸與平衡研究”,國立成功大學環境工程所,碩士論文。
【67】吳子顥,2006,“活性炭對機能性寡醣恆溫吸附特性之研究”,靜宜大學食品營養學系,碩士論文。
【68】S. J. Greeg, 1967, “Adsorption surface areas and porosity”, New York: Academic Press London.
【69】高廉、孫靜、劉陽橋,2005,奈米粉體的分散及表面改性,五南圖書股份有限公司社。
【70】J. Matos, J. Laine, J. M. Herrmann, 1998, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon”, Appl. Catal. B-Environ., vol. 18, pp. 281-291.
【71】H. Yoneyama, 2000, “Titanium Dioxide/Adsorbent Hybrid hotocatalysts for Photodestruction of Organic Substances of Dilute Concentrations”, Catal. Today, vol. 58, pp. 133-140.
【72】I. Michio, M. Hiroyuki, K. Hidetaka, 1997, “A New Simple Process for Carbon Coating Ceramic Particles using Poly(Vinyl Chloride)”, J. Eur. Ceram. Soc., vol. 18, pp. 1011-1015.
【73】T. Tsumura, N. Kojitani, 2002, “Carbon coating of anatase-type TiO2 and photoactivity”, J. Mater. Chem., vol. 12, pp. 1391-1396.
【74】M. Inagaki, Y. Hirosea, 2003, “Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution”, Carbon, vol. 41, pp. 2619-2624.
【75】T. Tsumura, Y. Hattori, 2004, “Formation of the Ti4O7 phase through interaction between coated carbon and TiO2”, Desalination, vol. 169 ,pp. 269-275.
【76】B. Tryba, A. W. Morawski, T. Tsumura, 2004, “Hybridization of adsorptivity with hotocatalytic activity-carbon-coated anatase”, J. Photochem. Photobiol. A-Chem., vol. 167, pp. 127-135.
【77】M. Toyoda, Y. Yoshikawa, 2005, “Photoactivity of carbon-coated anatase for decomposition of iminoctadine triacetate in water”, J. Photochem. Photobiol. A-Chem., vol. 171, pp. 167-171.
【78】M. Inagaki, F. Kojin, 2005, “Carbon-coated anatase: the role of the carbon layer for photocatalytic performance”, Carbon, vol. 43, pp. 1652-1659.
【79】Y. Li, X. Li, J. Li, J. Yin, 2006, “Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study”, Water Res., vol. 40 , pp. 1119-1126.
【80】T. Matsunaga, M. Inagaki, 2006, “Carbon-coated anatase for oxidation of methylene blue and NO”, Appl. Catal. B-Environ., vol. 64, pp. 9-12.
【81】Y. Tao, C. Y. Wu, D. W. Mazyck, 2006, “Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration”, Chemosphere, vol. 65, pp. 35-42.
【82】S. Mozia, M. Toyoda, 2007, “Comparison of effectiveness of methylene blue decomposition using pristine and carbon-coated TiO2 in a photocatalytic membrane reactor”, Desalination, vol. 212, pp. 141-151.
【83】Y. Liu, S. Yang, J. Hong, C. Sun, 2007, “Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon”, J. Hazard. Mater., vol. 142, pp. 208-215.
【84】S. Mozia, M. Toyoda, M. Inagaki, B. Tryba, A. W. Morawski, “Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor”, J. Hazard. Mater., vol. 140, pp. 369-375.
【85】Y. Li, S. Zhang, Q. Yu, W. Yin, 2007, “The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method”, Appl. Surf. Sci., vol. 253, pp. 9254-9258.
【86】A. B. Gambhirea, M. K. Landea, A. B. Mandaleb, K. R. Patilb, B. R. Arbad, 2008, “Photocatalytic activity and characterization of sol-gel-derived Cr(III)-doped TiO2-coated active carbon composites”, Philos. Mag., vol. 88, pp. 767-779.
【87】Y. Ao, J. Xu, D. Fu, X. Shen, C. Yuan, 2008, “Low temperature preparation of anatase TiO2-coated activated carbon”, Colloids Surf. A-Physicochem. Eng. Asp., vol. 312, pp. 125-130.
【88】S. Wang, L. Ji, B. Wu, Q. Gong, Y. Zhu, J. Liang, 2008, “Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes”, Appl. Surf. Sci., vol. 255, pp. 3263-3266.
【89】Z. Xu, Y. Long, S. Z. Kang, J. Mu, 2008, “Application of the Composite of TiO2 Nanoparticles and Carbon Nanotubes to the Photo-Reduction of Cr(VI) in Water”, J. Dispersion Sci. Technol., vol. 29, pp. 1150-1152.
【90】T. W. Kim, M. J. Lee, W. G. Shim, J. W. Lee, T. Y. Kim, D. H. Lee, H. Moon, 2008, “Adsorption and photocatalytic decomposition of organic molecules on carbon-coated TiO2”, J. Mater. Sci., vol.43, pp. 6489-6494.
【91】X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, Z. Wen, 2009, “A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon”, Appl. Surf. Sci., vol. 255, pp. 3953-3958.
【92】Y. T. Kwon, K. Y. Song, W. I. Lee, 2000, “Photocatalytic Behavior WO3-Loaded TiO2 in an Oxidation Reaction”, J. Catal., vol. 191, of pp. 192-199.
【93】K. Y. Song, M. K. Park, Y. T. Kwon, 2001, “Preparation of Transparent Particulate MoO3/TiO2 and WO3/TiO2 Films and Their Photocatalytic Properties”, Chem. Mater., vol. 13, pp. 2349-2355.
【94】A. Rampaul, I. P. Parkin, S. A. O’Neill, J. DeSouza, 2003, “Titania and tungsten doped titania thin films on glass; active photocatalysts”, Polyhedron, vol. 22, pp. 35-44.
【95】S. Komornicki, M. Radecka, P. Sobas, 2004, “Structural, electrical and optical properties of TiO2-WO3 polycrystalline ceramics”, Mater. Res. Bull., vol. 39, pp. 2007-2017.
【96】J. H. Pan, W. I. Lee, 2005, “Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties”, Chem. Mater., vol. 18, pp. 847-853.
【97】H. Yang, R. Shi, K. Zhang, Y. Hu, A. Tang, X. Li, 2005, “Synthesis of WO3/TiO2 nanocomposites via sol-gel method”, J. Alloy. Compd., vol. 398, pp. 200-202.
【98】H. Yang , L. Guo, W. Yan , H. Liu, 2006, “A composite visible-light photocatalyst for hydrogen production”, J. Power Sources, vol. 159, pp. 1300-1304.
【99】Y. Liu, L. Guo, W. Yan , H. Liu, 2006, “A novel composite photocatalyst for water splitting hydrogen production”, J. Power Sources, vol. 159, pp. 1305-1309.
【100】H. Song, H. Jiang, X. Liu, G. Meng, 2006, “Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation”, J. Photochem. Photobiol. A-Chem., vol. 181, pp. 421-428.
【101】B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, 2006, “Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide”, J. Phys. Chem. B, vol.110, pp. 14391-14397.
【102】E. A. El-Sharkawy, A. Y. Soliman, K. M. Al-Amer, 2007, “Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation”, J. Colloid Interface Sci., vol. 310, pp. 498-508.
【103】V. Puddu, R. Mokaya, G. Li Puma, 2007, “Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity”, Chem. Commun., vol., pp. 4749-4751.
【104】C. F. Lin , C. H. Wu , Z. N. Onn, 2008, “Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems”, J. Hazard. Mater., vol. 154, pp. 1033-1039.
【105】K. K. Akurati, A. Vital, J. P. Dellemann, 2008, “Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity”, Appl. Catal. B-Environ., vol. 79, pp. 53-62.
【106】N. Couselo, F. S. G. Einschlag, , 2008, “Tungsten-Doped TiO2 vs Pure TiO2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism”, J. Phys. Chem. C, vol. 112, pp. 1094-1100.
【107】M. Grandcolas, M. Karkmaz Le Du, F. Bosc, A. Louvet, N. Keller, V. Keller, 2008, “Porogen Template Assisted TiO2 Rutile Coupled Nanomaterials for Improved Visible and Solar Light Photocatalytic Applications”, Catal. Lett., vol. 123, pp. 65-77.
【108】D. Ke, H. Liu, T. Peng, X. Liu, K. Dai, 2008, “Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles”, Mater. Lett., vol.62, pp. 447-450.
【109】A. C. Lee, R. H. Lin, C. Y. Yang, M. H. Lin, W. Y. Wang, 2008, “Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol-gel method”, Mater. Chem. Phys., vol. 109, pp.275-280.
【110】郭威廷,2008,“原位聚合法製備二氧化鈦/碳複合材料及光催化特性”,國立高雄應用科技大學,碩士論文。
【111】L. H. Kao, T. C. Hsu, 2008, “Silica template synthsis of ordered mesoporous carbon thick films with 35-nm pore size from mesophase pitch solution”, Mater. Lett., vol. 62, pp. 695-698.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top