(3.236.222.124) 您好!臺灣時間:2021/05/11 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林淑琪
研究生(外文):Shu-Chi Lin
論文名稱:奈米管(棒)狀聚苯胺在太陽光能上的應用
論文名稱(外文):Applications of Nanotubular Polyaniline on Solar Light and Energy
指導教授:謝達華謝達華引用關係
指導教授(外文):Tar-Hwa Hsieh
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:奈米管聚苯胺太陽光能
外文關鍵詞:NanotubePolyanilineSOlar energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
改變聚苯胺高分子聚合條件如不同種類摻雜質子酸、不同破乳劑、二四氫夫喃及對甲基苯胺添加量等參數合成出不同之奈米管狀聚苯胺高分子。進而利用其獨具之吸收近紅外線之特性達到隔截太陽光中紅外線熱線並維持一定可見光穿透率功能。結果顯示,含十二烷基苯磺酸所合成出的奈米管狀聚苯胺在穿透式顯微鏡中呈透明狀態。而以少許氨水水溶液破乳者其顆粒較細,近紅外線吸收效果呈現藍位移現象,可見光穿透率也較佳。含四氫夫喃可使合成出的奈米管狀聚苯胺顆粒更細,近紅外線吸收效果呈現紅位移現象,可見光穿透率最佳。對甲基苯胺添加則可獲得針狀實心奈米棒狀聚苯胺高分子但導電度較差,近紅外線吸收效果不好但能減少可見光中紅光吸收量而提高透明度。
在多晶矽太陽能應用上,顯示將含奈米管狀聚苯胺高分子之油墨直接塗在p極(鋁電極)上,可在50,000 Lux.下,有效降低並聯電阻、提升電洞傳導度而提升整體發電效率。至於塗在p層及鋁電極間當電洞傳輸層或去除鋁電極質接當正電極則分別因重新塗抹之鋁膠無法燒結及聚苯胺高分子本身相對於鋁導電度較差無法有效降低電阻致使發電效率不升反降
The preparation conditions of the nanotubular polyaniline ( PANINT ) via an emulsion polymerization were varied to obtain various types of polyanilines to test their feasibility as an IR cutter ( cutting Near IR but let visible light go through) and to d the polymerization of the PANINT including variation of the dopingecrease the series resistance. Several parameters were changed during protonic acid, types of de-emusifiers, percentage of tetrahydrofuran ( THF ) in the reaction mixtures, percentage of p-mehtylaniline ( PMA ) in the reaction mixtures.. etc. The application of ammonia aqueous solution as a de-emulsifier can effectively reduce the particle size of the PANINT to increase its NIR absorbance and visible light transmittance as well. Likewise, the presence of hydrophobic benzene solvent in the polymerization mixtures can also shrink the particle size and obtain a higher absorbance of NIR without losing the transmittance of visible light. Applying p-methyl aniline can effectively decrease its molecular weight and obtain needle-like PANINT with a poorer NIR absorbance and conductivity. But it can enhance the absorption of the red light in the visible range and increase the transparency of the film.
The efficiency of the amorphous silicone solar cell ( ASSC ) panel can be effectively increased under 50,000 Lux. if ink containing PANINT is coated on the surface of the Al electrode of the ASSC due to the decrease of the parallel resistance. Neither coating between the p-type and Al electrode as hole transport layer ( HTL ) nor coating behind the p-type as the positive electrode without Al electrode can increase the efficiency of ASSC but decrease its efficiency , resulting from the un-sintering and poor conductivity of the PANINT, respectively.
第一章緒論………………………………………………………………1
1-1 前言………………………….………………………….………1
1-2 研究動機……………………………..…………………………..3
1-3 研究架構…………………………………………………………5
第二章文獻回顧………………………………………………………...7
2-1太陽能…………………………………………………………….7
2-2 隔熱(近紅外線吸收)效應……………………………………….8
2-2-1阻隔性隔熱…………………………………………….............9
2-2-2反射隔熱…………………………………………..…...............9
2-2-3輻射隔熱................................................................................... 10
2-3 光電效應......................................................................................10
2-4 太陽能電池簡介..........................................................................11
2-4-1 矽基型. .....................................................................................12
2-4-2 薄膜式太陽能電池. .................................................................13
2-4-3 有機太陽能電池.......................................................................14
2-5 聚苯胺.........................................................................................16
2-6聚苯胺之性質...............................................................................19
2-6-1 聚苯胺紅外線光譜分析…...........……………………………19
2-6-2 聚苯胺之紫外-可見光光譜…………………………………..20
2-6-3 聚苯胺之熱性質……………………………………...………21
2-6-4 聚苯胺之應用…………………………………………...……22
2-6-5奈米纖維聚苯胺........................................................................24
第三章 實驗程序24……………………………………………………..26
3-1 實驗材料與藥品………………………………………………...26
3-2 儀器設備………………………………………………………...28
3-3 實驗步驟………………………………………………………...31
3-3-1 奈米聚苯胺合成………………………………………….......32
3-3-2 對甲基苯胺添加實驗……………………………………...…32
3-3-3 氨水溶液破乳實驗.................................................................. 33
3-3-4 添加四氫夫喃奈米管聚苯胺合成……………………..…….33
3-3-5 奈米聚苯胺甲苯油墨製備.......................................................33
3-4性質測定.......................................................................................33
第四章 結果與討論 ……………………………………………………35
4-1乳化聚合奈米管(棒)聚苯胺反應機構探討與鑑定…………….35
4-2添加四氫夫喃之奈米管(棒)聚苯胺合成……………………….43
4-3添加單官能基苯胺(PMA)之低分子量乳化聚合………………44
4-4添加氨水溶液破乳之奈米聚苯胺合成…………………………46 4-5隔熱效率測試(UV-Vis-NIR)………………………………….…47
4-6奈米管聚苯胺油墨塗抹多晶矽太陽能面板產電效率測試……51
第五章 結論……………………………………………………………61
參考文獻………………………………………………………………..62
(1) Shirakawa, H., Ikeda, S. (1971). Polym. J., l2, 231.
(2) Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.G. (1977). J. Chem. Soc. Chem. Comm., 579.
(3) Huang, J.C. (2002). Adv. Polym. Tech, 21, 299.
(4) Varma, I.K., Gupta, G., Sidhu, C.S. (2001). Macromol. Symp., 164, 401.
(5) Trivedi, D.C., Nalwa, H.S. (1997). Handbook of Organic Conductive Molecules and Polymers, 2, 548.
(6) 林彥文(2003)。聚苯胺/奈米碳管導電複合材料之製備與電性研究。國立中興大學碩士論文,台中市。
(7) http://wcfury.blog.sohu.com
(8) Mie G. (1908). Ann.Phys., 25, 377.
(9) Kreibig, U., Fragstein, C.V.Z. (1969). Ann.Phys., 224, 307.
(10) Michael F. Durstock, (2004). Chem. Mater., 16, 4687-4692.
(11) Pochettino, A. (1906). Acad. Lincei Rend., 15, 355.
(12) Volmer, M. (1913). Ann. Physik., 40, 775.
(13) Goris, L. (2003) Synth. Met., 138, 2493.
(14) Winder, C. (2002),Thin Solid Films, 403-404, 373.
(15) Liang, L., Liu, J., Windisch, C.F., Exarhos, G.J., & Lin, Y.H. (2002). Angew. Chem., 41, 3665.
(16) MacDiarmid, A.G., Jones, W.E., Norris, I.D., Gao, J., Johnson, A.T., Pinto, N.J., Hone, J., Han, B., Ko, F.K., Okuzaki, H., & Llaguno, M. (2001). Synth. Met., 119, 270.
(17) Desai, K., & Sung, C. (2002). Mater. Res. Soc. Symp. Proc., 736, 121.
(18) Desai, K., & Sung, C. (2003). Mater. Res. Soc. Symp. Proc., 788, 209.
(19) Pinto, N.J., Johnson, A.T., Jr, MacDiarmid, A.G., Mueller, C.H., Theofylaktos, N., Robinson, D.C., & Miranda, F.A. (2003). Appl. Phys. Lett., 83, 4244.
(20) Cao, Y., Treacy, G.M., Smith,P., Heeger, A.J. (1993). Synth. Met., 3526, 55.
(21) Pron, Osterholm,I-E, Smith, P., Heeger, A.J., Laska, J., Zagorska, M. (1993). Synth. Met., 3520, 55.
(22) Kim, B.O., Jung, J.H., Hong, S.H., Joo, J. (2002). Macromolecules, 35, 1419.
(23) 賴榮一(2004)。金屬/導電高分子奈米粒子膠體混成系統之研究, 國立雲林科技大學化學工程所碩士論文,雲林縣。
(24) Epstein, A.J., MacDiarmid, A.G. (1995). Synthetic Metals, 69, 179.
(25) Albuquerque, J.E., Mattoso, L.H.C., Balogh, D.T., Faria, R.M., Masters, J.G., Macdiarmid, A.G. (2000). Synth. Met., 113, 19.
(26) MacDiarmid, A.G. (2002). Synth. Met., 125, 11.
(27) Ho, K.S. (2002). Synth. Met., 126(2-3), 151; Hsieh BZ, Hung-YiChuang HY, Chao L., Li YJ, Huang YJ; Tseng PH, Hsieh TH, Ho KS, (2008) , Polymer, 49, 4218.
(28) Kim, B.O., Jung, J.H., Hong, S.H., Joo, J. (2002). Macromolecules, 35, 1419.
(29) Ohsaka, T., Ohnuki, Y., Oyama, N., Katagiri, G., Kamisako, K. (1984). Electroanal. Chem., 161, 399.
(30) Tang, J., Jing, X., Wang, B., Wang, F. (1988). Synth. Met., 24, 231.
(31) Chandrakanthi, N., Careem, M.A. (2000). Polym. Bull., 44, 101.
(32) Lu, F.L., Wudl, F., Nowak, M., Heeger, A.J. (1986). J. Am. Chem. Soc., 108 , 8311.
(33) Stafstrom, S., Bredas, J.L., Epstein, A.J., Woo, H.S., Tanner, D.B., Huang, W.S., MacDiarmid, A.G. (1987). Phys. Rev. Lett., 59, 1464.
(34) Shimano, J.Y., MacDiarmid, A.G. (2001). Synth. Met., 123, 251.
(35) 羊岳峰(2003)。孔道均一的模版內合成聚苯胺奈米管。國立中央大學碩士論文,桃園縣。
(36) Chandrakanthi, N., Careem, M.A. (2000). Polym. Bull., 44, 101.
(37) Matveeva, E.S., Calleja, R.D., Parkhutik, V.P. (1995). Synth. Met., 72, 105.
(38) Chen, C.H. (2003).J. Appl. Polym. Sci., 89, 2142.
(39) Sevil, U.A., Guven, O., Birer, O., Suzer, S. (2000). Synth. Met., 110, 175.
(40) 柯賢達(1994)。Study on the synthesis of Poly(thiophene-3-acetic acid) and their blends。國立臺灣大學碩士論文,台北市。
(41) Cao, Y., Smith, P., & Hegger, A.J. (1993). Synth. Met., 3514, 55.
(42) Nigrey, P.J., & Macinnes, D.F. (1981). J. Electrochem. Soc, 128, 1651.
(43) Nigrey, P.J., & Macinnes, D.F. (1981). J. Electrochem. Soc, 128, 1651.
(44) 張德洲(1993)。化工技術, 1, 67。
(45) 黃慶弘(2005)。聚苯胺/磁赤鐵礦奈米複材之製備及其電磁特性之研究。國立高雄應用科技大學碩士論文,高雄市。
(46) Letheby, H. (1862). Journal of Chemical Society, 15, 161.
(47) MacDiarmid, A.G., Chiang, J.C., Halpern, M., Huang, W.S., Mu, S.L., Somasir, N.L.D., Wu, W., & Yaniger, S.I. (1985). Molecular Crystals and Liquid Crystals, 121, 173.
(48) Frank Lux (1994). Polymer, 35, 2915.
(49) Albuquerque, J.E., Mattoso, L.H.C., Balogh, D.T., Faria, R.M., Masters, J.G., & MacDiarmid, A.G. (2000). Synth. Met., 113, 19.
(50) Allen, W.N., Prant, P., & Carosella, C.A. (1978). Synth. Met., 1, 151.
(51) Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Synthetic etals, 61, 225.
(52) Gospodinova, N., Terlemezyan L. (1998). Prog. Polym. Sci., 3, 1443.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔