(34.226.234.102) 您好!臺灣時間:2021/05/12 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡政勳
研究生(外文):Cheng-Hsun Tsai
論文名稱:氣相傳輸法合成摻雜鎵的氧化鋅奈米結構之特性研究
論文名稱(外文):Characterization of Ga doped ZnO nanostructures synthesized by vapor phase transport process
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:105
中文關鍵詞:氧化鋅掺雜光繞射儀高解析度矽晶片氧化鋅海膽形
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅奈米結構藉由掺雜3價元素或是7價元素能夠有效的去調整它的形狀,電、光和磁的特性。通常3價的元素例如有鋁、銦、鎵;7價元素例如有溴、氯、碘都能夠當作N型掺雜元素掺雜進氧化鋅。而3價元素更能有效的被應用是因為它的飽和蒸氣壓比7價元素來的低。在本篇論文中,我們將利用氣相傳輸的方式在矽晶片上鍍一層銀薄膜並放置在石英管式高溫爐內成長鎵摻雜氧化鋅奈米結構,鎵摻雜氧化鋅奈米結構之形成機制為經由氣-液-固(vapor-liquid-solid, VLS)方式成長。在氧氣與氮氣氣氛下,藉由改變氧化鋅,氧化鎵和碳粉的比例、氣體流量、成長時間、成長溫度等,探討掺雜鎵的氧化鋅奈米結構成長及特性。
我們藉由場發電子顯微鏡(FESEM)可以清楚地看到不同形貌的鎵摻雜氧化鋅奈米結構,例如海膽形和四腳形的奈米結構。能量散佈光譜儀(EDS)可對材料內組成的元素進行分析,經由測量中我們得到氧、鋅、碳、矽及銀的成份分別來自於矽基板、氧化鋅奈米結構及銀觸媒。X光繞射儀(XRD)是用來分析鎵摻雜氧化鋅奈米結構的結晶特性;經由量測得知掺雜鎵氧化鋅奈米海膽狀結構的主成長方向為(101)面並且沒有鎵的成份或其它鎵的化合物的測量峰值被偵測到。利用高解析度穿透式電子顯微鏡(HRTEM)分析可得知奈米結構之材料結構、缺陷、結構、晶格常數以及對稱性。光激發光能譜儀能藉由光波長的位置探知材料發光位置及材料的內部是否有缺陷的存在並由此判斷成長氧化鋅奈米結構的品質。此外,掺雜鎵氧鋅奈米結構的場發射性能也會詳細加以探討。
The morphologie, electrical, optical, and magnetic properties of ZnO nanostructures can be effectively modified by doping with group III elements or group VII elements. In general, group III elements such as Al, In and Ga and group VII elements such as Br, Cl and I can be used as n-type dopants for ZnO. The group III elements are easier to be introduced by vapour phase reactions because of their lower vapor pressure than group VII elements. In this study, ZnO:Ga nanostructures were synthesized on the Ag/Si substrates with a quartz tube furnace by using vapor-liquid-solid (VLS) growth mechanism and vapor phase transport process. Parameters of oxygen and nitrogen atmosphere, weight ratios of ZnO, Ga2O3 and graphite powders, gas flow rates, growth time and growth temperatures were varied to investigate the characteristics of the ZnO:Ga nanostructures.
By scanning electron microscopy (SEM), the morphology of ZnO:Ga nanstructures, such as sea-urchin-like, tetrpod-like and nanorod with shap end nanstructures, can be differentiated. Energy dispersive spectrum (EDS) was used to analyze the chemical composition of nanostructures; it was found that the detected oxygen, zinc, carbon, silicon, gallium, silver were from ZnO:Ga nanostructures, Si substrate and catalyst. X-ray diffraction (XRD) pattern were used to analyze the crystallization of ZnO:Ga nanostructures. The main grown plane of ZnO nanostructures were (101) planes and no typical diffraction peak corresponding to Ga or Ga-compound impurity phases was observed. High-resolution transmission electron microscopy (HRTEM) was used to analyze the material structure, defect, lattice constants and symmetrization of nanostructures. Photoluminescence (PL) spectrum of ZnO:Ga nanostructures clearly exhibited the position of the emission peaks and the associated crystalline quality in terms of the annihilations of the defects. Additionally, the field emission characteristics of ZnO:Ga nanstructures was discussed in detail.
Content
Abstract (in Chinese) II
Abstract (in English) IIV
Acknowledgement VII
Content VIII
Table Caption XI
Figure Captions XI
Chapter 1 1
1-1 Preface ..1
1-2 Introduction to nanotechnology 2
1-3 ZnO characteristics and nanostructures 4
Chapter 2 7
2-1 Overview of zinc oxide 7
2-2 Thermal evaporation 7
2-3 Vapor-liquid-solid growth mechanism 8
2-4 Vapor-liquid growth mechanism……………………………………….10
2-5 The luminescence mechanism of zinc oxide 11
2-6 Fowler-Nordheim theory 12
2-7 N-type doped ZnO……………………………………………..…....15
Chapter 3 17
3-1 Experiment procedures 17
3-1-1 Experiment material 17
3-1-2 Substrate treatment 17
3-1-3 Catalyst evaporation 18
3-1-4 ZnO:Ga nanostructure growth 19
3-2 Analyses system 20
3-3-1 Scanning electron microscopy (SEM) 20
3-3-2 X-ray powder diffraction (XRD) 21
3-3-3 Transmission electron microscopy (TEM) 22
3-3-4 Photoluminescence (PL) 22
3-3 Field emission measurement 23
Chapter 4 25
4-1 Growth temperature 25
4-1-1 Scanning electron microscopy (SEM) 26
4-2 Temperature raising rate 27
4-2-1 scanning electron microscopy (SEM) 27
4-2-2 Energy-dispersed X-ray (EDX) 28
4-3-4 X-ray diffraction (XRD) 28
4-3-4 Photoluminescence (PL) 29
4-3-4 Transmission electron microscopy (TEM) 29
4-3-6 Field emission property 30
4-3 Growth time 32
4-3-1 Scanning electron microscopy (SEM) 32
4-3-2 Energy-dispersed X-ray (EDX) 33
4-3-3 X-ray diffraction (XRD) 33
4-3-4 Photoluminescence (PL) 33
4-3-5 Transmission electron microscopy (TEM) 34
4-3-6 Field emission property 35
4-4 Oxygen flow rate 37
4-4-1 Scanning electron microscopy (SEM) 37
4-4-2 Energy-dispersed X-ray (EDX) 38
4-4-3 X-ray diffraction (XRD) 38
4-4-4 Photoluminescence (PL) 39
4-4-5 Transmission electron microscopy (TEM) 39
4-4-6 Field emission property 40
4-5 Two-quartz boat under different oxygen flow rates 42
4-5-1 Scanning electron microscopy (SEM) 42
4-5-2 Energy-dispersed X-ray (EDX) 43
4-5-3 X-ray diffraction (XRD) 43
4-5-4 Photoluminescence (PL) 44
4-5-5 Transmission electron microscopy (TEM) 44
4-5-6 Field emission property 45
4-6 Two-stage growth with different growth time 47
4-6-1 Scanning electron microscopy (SEM) 47
4-6-2 Energy-dispersed X-ray (EDX) 48
4-6-3 X-ray diffraction (XRD) 48
4-6-4 Photoluminescence (PL) 49
4-6-5 Transmission electron microscopy (TEM) 49
4-6-6 Field emission property 50
4-7 Two-region growth under different growth time 52
4-7-1 Scanning electron microscopy (SEM) 52
4-7-2 Energy-dispersed X-ray (EDX) 53
4-7-3 X-ray diffraction (XRD) 53
4-7-4 Photoluminescence (PL) 54
4-7-5 Transmission electron microscopy (TEM) 54
4-7-6 Field emission property 55
4-8 Growth with optimum conditions 57
4-8-1 Scanning electron microscopy (SEM) 57
4-8-2 Energy-dispersed X-ray (EDX) 57
4-8-3 X-ray diffraction (XRD) 58
4-8-4 Photoluminescence (PL) 58
4-8-5 Transmission electron microscopy (TEM) 59
4-8-6 Field emission property 60
Chapter 5 62
References 64
[1]H. W. Kroto, J. R. Heath, S. O'Brien, R. F. Curl and R. E. Smalley: Nature (London) 318 (1985) 162.
[2]S. Iijima, Nature 354 (1991)56-58
[3]S. Iijima, T. Ichihashi, Nature 363 (1993)603.
[4]D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature (London) 363 (1993) 605.
[5]B.M. Ataev, I.K. Kamilov, V.V. Mamedov, Tech. Phys. Lett. 23 (1997) 842.
[6]H. Saitoh, M. Saitoh, N. Tanaka, Y. Ueda, S. Ohshio, Jpn. J. Appl. Phys. 38 (1999) 6873.
[7]R. Konenkamp, K. Boedecker, M.C. Lux-Steiner, M. Poschenrieder, F. Zenia, C.L. Clement, S. Wagner, Appl. Phys. Lett. 77 (2000) 2575.
[8]Y. Li, G.W. Meng, L.D. Zhang, Appl. Phys. Lett. 76 (2000) 2011.
[9]M.J. Zheng, L.D. Zheng, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363 (2001) 113.
[10]Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feang, Appl. Phys. Lett. 78 (2001) 1897.
[11]M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13 (2001) 113.
[12]M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897.
[13]W.I. Parks, Y.H. Jun, S.W. Jung, Gyu-Chul Yi, Appl. Phys. Lett. 82 (2003) 964.
[14]S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Crystal Growth 247 (2003) 357.
[15]D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, D. Steeves, B. Kimball, M. Sennett, Appl. Phys. Lett. 83 (2003) 2061.
[16]J. Lee, K. Park, M. Kang, I. Park, S. Kim, W.K. Cho, H.S. Han, S. Kim, J. Crystal Growth 254 (2003) 423.
[17]Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947.
[18]M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292 (2001) 1897.
[19]J. Y. Li, X. L. Chen, H. Li, M. He, Z. Y. Qiao, “Fabrication of zinc oxide nanorods.” Journal of crystal growth 233 (2001) 5-7.
[20]J. Duan, X.T. Huang, E. Wang, Mater. Lett. 60 (2006) 1918.
[21]Z.L. Wang, Annu. Rev. Phys. Chem. 55 (2004) 159.
[22]A. Umar, Y.B. Hahn, Nanotechnology 17 (2006) 2174.
[23]J.Y. Lao, J.Y.Huang,D.Z.Wang, Z.F.Ren,D. Steeves,B.Kimball,W. Porter, Appl. Phys., A Mater. Sci. Process. 78 (2004) 539.
[24]G.H. Du, F. Xu, Z.Y. Yuan, G. Van Tendeloo, Appl. Phys. Lett. 88 (2006) 243101.
[25]Z. Fang, K.B. Tang, G.Z. Shen, D. Chen, R. Kong, S.J. Lei, Mater. Lett. 60 (2006) 2530.
[26]C.X. Xu, X.W. Sun, J. Cryst. Growth 277 (2005) 330.
[27]J. Wang, J.M. Cao, B.Q. Fang, P. Lu, S.G. Deng, H.Y. Wang, Mater. Lett. 59 (2005) 1405.
[28]M. Fu, J. Zhou, Q.F. Xiao, B. Li, R.L. Zong, W. Chen, J. Zhang, Adv. Mater. 18 (2006) 1001.
[29]X. T. Zhou, N. Wang, F. C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee, S. T. Lee, , Mater. Sci. Eng. A, 286 (2000) 119.
[30]X. T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao, N. Wang, I. Bello, C. S. Lee, S. T. Lee, Chem. Phys. Lett., 318 (2000) 58.
[31]Y. Cui, C. M. Leiber, , Science, 291 (2001) 851.
[32]A. I. Yanson, I. K. Yanson, J. M. Van Ruitenbeek, Nature, 400 (1999) 144.
[33]J. Hu, M. Ouyang, P. Yang, C. M. Lieber, , Nature, 399 (1999) 48.
[34]A. I. Yanson, G. B. Bollinger, H. E. van den Brom, N. Agraït, J. M. Ruitenbeek, Nature, 395 (1998) 783.
[35]A.Bezryadin, C. N. Lau, M. Tinkham, Nature, 404 (2000) 971.
[36]Y. Cui, Q. Wei, H. Park, C. M. Leiber, , Science, 293 (2001) 1289.
[37]Y. W. Wang, L. D. Zhang, G. W. Meng, X. S. Peng, Y. X. Jin, J. Zhang, , J. Phys. Chem B, 106 (2002) 2502.
[38]P. Yang, Y. Wu, R. Fan, Int. J. Nanoscience., 1 (2002) 1.
[39]E. Tosatti, S. Prestipino, S. Kostlmeier, A. D. Corso, F. D. D. Tolla, Science, 291 (2001) 288.
[40]J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Leiber, Science, 293 (2001) 1455.
[41]X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, J. J. Du, Chem. Phys. Lett., 336 (2001) 53.
[42]G. Timp, New York (1999).
[43]A. D. Yoffe, Adv. Phys. Vol.51, (2002) 799-890.
[44]Dingle, R., Proceedings of 13th International Conference on the Physics of Semiconductors, Rome, edited by F. G. Fumi (1976) 965-965.
[45]Rodgers, P. Journal of Nature Nanotechnology(2006) .
[46]Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 83, (2003) 1689-1691.
[47]Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, Appl. Phys. Lett. 86, (2005) 203115-203117.
[48].K. Ip, M. Frazier, Y. W. Heo, D. P. Norton, C. R. Abernathy, and S. J. Pearton, J. Vac. Sci. Technol. B 21, (2003) 1476-1475.
[49]W. I. Park, J. S. Kim, G. C. Yi, and H. J. Lee, Adv. Mater. 17, (2005) 1393-1394.
[50]J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, J. Am. Chem. Soc. 127, (2005) 16376-16377.
[51]C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen, IEEE transactions on nanotechnology, (2005) 649.
[52]W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yi, Applied Phys lett 80, (2002) 4232.
[53]A. Umar, E. K. Suh, Y. B. Hahn, Solid state communications 139 (2006) 447-451.
[54]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.
[55]Y. Wu, P. Yang, Chem. Mater. 12 (2000) 605.
[56]Y. J. Zhang, Q. Zhang, N. L. Wang, Y. J. Yan, H. H. Zhou, J. Zhu, J. Cryst. Growth 226 (2001) 185
[57]J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, J. Vac. Sci. Technol. B15 (1997) 554
[58]M. Yazawa, M. Kohuchi, A. Muto, K. Hiruma, Adv. Mater. 5 (1993) 577
[59]K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 77 (1995) 447
[60]C. C. Chen, C. C. Yeh, Adv. Mater. 12 (2000) 738
[61]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, J. Vac. Sci. Technol. 19 (2001) 1115
[62]J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, L. D. Zhang, Chem. Phys. Lett. 345 (2001), 372
[63]X. Duan, C. M. Leiber, Adv. Mater. 12 (2000) 298
[64]Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, Chem. Phys. Lett. 357 (2002) 314
[65]Y. W. Wang, G. W. Meng, L. D. Zhang, C. H. Liang, J. Zhang, Chem. Mater. 14 (2002) 1773
[66]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897
[67]Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth 245 (2002) 163
[68]X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, J. J. Du, Chem. Phys. Lett. 336 (2001) 53
[69]M. H. Huang, Y. Wu, H. Feick, E. Webber, P. Yang, Adv. Mater. 13 (2000) 113
[70]Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, J. Am. Chem. 124 (2002) 1817
[71]D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, Physica E 9 (2001) 305
[72]W. Q. Han, P. Kohler-Redlich, F. Ernst, M. Ruhle, Solid State Commun. (115 2000) 527
[73]Y. Wu, P. Yang,J. Am. Chem. 123 (2001) 3165
[74]M. S. Gudiksen, C. M. Leiber, J. Am. Chem. 122 (2000) 8801
[75]S. Bethke, H. Pan and B. W. Wessels, Appl. Phys. Lett., 52 (1998) 138
[76]H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys., 95 (2004) 1246
[77]X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou and C. Xu, Chem. Phys. Lett., 364 (2002) 57
[78]P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun., 103 (1997) 459.
[79]S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong and J. B. Ketterson, Appl. Phys. Lett., 75 (1999) 2761
[80]V. Srikant and D. R. Clarke, J. Appl. Phys., 83 (1998) 5447
[81]]N. A. Cade, R. A. Lee, and C. Capel, IEEE Trans. on Electron Devices, 36, 2709
[82]Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, G. W. Yang, Chemical physics letters 403 (2005) 248-251
[83]L. Liao, J. C. Li, D. F. Wang, C. Liu, Q. Fu, Materials letters 59 (2005) 2465-2467
[84]R. H. Fowler and D. L. Nordheim, Roy. Soc. Proc. A119 (1928) 173.
[85]H.P. Tang, L.P. Zhu, H.P. He, Z.Z. Ye, Y. Zhang, M.J. Zhi, Z.X. Yang, B.H. Zhao and T.X. Li, J. Phys. D: Appl. Phys. 39 (2006), 2696.
[86]J. Zhong, S. Muthukumar, Y. Chen and Y. Lu, Appl. Phys. Lett. 83 (2003) 3401.
[87]M. Yan, H.T. Zhang, E.J. Widjaja and R.P.H. Chang, J. Appl. Phys. 94 (2003) 5240.
[88]J.S. Jie, G.Z. Wang, X.H. Han, Q.X. Yu, Y. Liao, G.P. Li and J.G. Hou, Chem. Phys. Lett. 387 (2004) 466.
[89]A. Guillen-Santiago, M.D.L. Olvera, A. Maldonado, R. Asomoza and D.R. Acosta, Phys. Status Solidi A 201 (5) (2004) 952.
[90]Minegishi K, Koiwai Y, Kikuchi Y,Yano K, Kasuga M and Shimizu A J. Appl. Phys. 36 (1997) 1453
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔