(3.238.173.209) 您好!臺灣時間:2021/05/17 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王千鴻
研究生(外文):Chien-Hung Wang
論文名稱:藉由活化劑的摻雜製備硫化鋅螢光粉及其發光特性探討
論文名稱(外文):Photoluminescence characteristics of ZnS phosphors synthesized with activators
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:131
中文關鍵詞:螢光粉活化劑
外文關鍵詞:phosphoractivatoractivator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:599
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用固態燒結法製備硫化鋅螢光粉。為了提升螢光粉的發光強度和製作白光螢光粉,採用不同活化劑的摻雜,譬如,過度金屬及稀土材料,來調整螢光粉的發光波長,以達到我們需求的發光顏色。摻雜的元素扮演著發光中心的角色,藉由激發,引致電子電洞結合以產生高的發光強度。
對螢光粉的製備,當燒結溫度為900oC,摻雜MnO2濃度為4 mol%時,黃橘光ZnS:MnO2螢光粉有最佳的發光。而當燒結溫度為900oC,摻雜PrCl3最佳濃度為4 mol%時,藍光ZnS:PrCl3螢光粉的發光表現最佳。此外,對藍光ZnS:DyF3螢光粉,最佳發光表現的製備條件是當燒結溫度為1000oC,而DyF3的最佳摻雜濃度為1 mol%。

由實驗結果可以發現,燒結時間、燒結溫度和摻雜活化劑種類可以改變螢光粉之光學特性。利用互補色的原理,將不同顏色的螢光粉依不同比例混合即可獲得白光螢光粉。在PL(Photoluminescence)量測中,激發波長設定為325 nm,激發源為氙燈,放射光皆以可見光區域為主。在CIE座標量測中,激發源是利用波長254 nm UV燈所測得。
In this study, ZnS phosphor was synthesized by solid-state reaction method. In order to enhance the emission intensity of phosphor and achieve white-light phosphor, different activators, such as the transition metals and the rare earth materials, were doped to modify the luminescence color of the phosphor. The doping ions act as luminescence centers for excited electron-hole pair recombination to produce high emission intensity.
For yellow-orange light of ZnS:MnO2 phosphor, the highest luminescent intensity was obtained when it was sintered at 900oC and doped with 4 mol% of MnO2. For blue light of ZnS:PrCl3 phosphor, the maximum intensity was observed when the doped PrCl3 concentration was 4 mol% and the sintering temperature was 900oC. In addition, for blue light of ZnS:DyF3 phosphor, the maximum intensity was achieved when it was doped with 1 mol% DyF3 and sintered at 1000oC.
To generate white-light emission, the phosphors were mixed by different weight percentage. The luminescence properties of phosphors were measured with PL measurements; the excitation wavelength of Xenon lamp was set at 325 nm. The CIE color coordinates of phosphors excited by an ultraviolet (UV) lamp were measured with a colorimeter (Minolta CS-100A, Japan).
Abstract (in Chinese)…………………………………………………..Ⅰ
Abstract (in English)…………………………………………………..III
Content…………………………………………………………………Ⅴ
Table Captions…………………………………………………………IX
Figure Captions………………………………………………………..X

Chapter 1 Introduction……………………………………..…..………. 1
1-1 Introduction of phosphors……………………………………...………1
1-2 Introduction of Electroluminescence…………………………...……...2
1-3 Motive of this study………………………………………...………….4

Chapter 2 Theory………………………………………………..………..6
2-1 Types and principles of the luminescence center……………...……….6
2-2 Luminescence mechanism………………………………..……………8
2-2-1 Category and application of the luminescence…..………….…..8
2-2-2 Fluorescence and phosphorescence………………………...…...9
2-2-3 Emission efficiency of phosphors…………………..……...…..10
2-2-4 Stoke shift……………………………………………...………12
2-2-5 Concentration quenching………………………………...…….15
2-3 ZnS phosphors………………………………………..………………15
2-4 Luminescence property of the rare earth elements…………..……….17
2-5 Crystal field theory………………………………………...……….…18
2-6 Emission efficiency of phosphors………………………….…..……..20
2-7 Solid-state sintering method…………………………………...……...21

Chapter 3 Experiment…………………………………..…….25
3-1 Experiment material………………………………………...………...25
3-2 Experiment installation……………………………………...………..25
3-3 Experiment procedures………………………………….……...…….26
3-3-1 Preparation of ZnS phosphor……………………………....…..26
3-3-2 Cleaning process for glass substrate…………………...………27
3-4 Measurement installation………………………………..……...…….28
3-4-1 Photoluminescence (PL)………….…………………...……….28
3-4-2 XRD (X-ray diffractometer spectrometer)…….………….……28
3-4-3 SEM (scanning electron microscope)………………….....……30
3-4-4 XPS (X-ray photoelectron spectroscopy)……………..….……30
3-4-5 EDS (energy dispersive spectrometer)………….…………..…31
3-4-6 TEM (transmission electron microscope)…….…………..……31
3-4-7 CIE color coordinate………………………...…………………31

Chapter 4 Results and Discussion………………………...…..33
4-1 The luminescence properties of Mn doped ZnS phosphors ……….....33
4-1-1 XRD analysis…………………………………...………….…..33
4-1-2 PL analysis……………………………………...……...………34
4-1-3 SEM analysis…………………………...…………..………….35
4-1-4 EDS analysis……………………………………..………...…..36
4-1-5 CIE analysis…………………………………...……………….36
4-2 The influence of DyF3 doping on the properties of ZnS phosphor…...36
4-2-1 XRD analysis………………………...……………………...…36
4-2-2 PL analysis…………………………...…………...……………38
4-2-3 SEM analysis…………………………………………..………39
4-2-4 CIE analysis……………………………………………………40
4-2-5 TEM analysis…………………………...……………...………40
4-3 ZnS:Mn-mixed ZnS:Dy phosphor……………………..……………..41
4-3-1 PL analysis…………………………………..……..………….41
4-3-2 CIE coordinates analysis…………………….…………..…….42
4-4 The influence of PrCl3 doping on the properties of ZnS phosphor…..42
4-4-1 XRD analysis………………………...……………..….………42
4-4-2 PL analysis………………………...………………...…………44
4-4-3 SEM analysis……………………………………..………...….45
4-4-4 CIE analysis……………………………………...…...………..46
4-4-5 XPS analysis…………………...………………...…………….46
4-4-6 TEM analysis……………………….………………...………..47
4-5 ZnS:Mn-mixed ZnS:Pr phosphor………………...………...........……47
4-5-1 PL analysis…………………………………...…………...……47
4-5-2 CIE analysis……………………...……………………...……..48
4-6 The influence of MnO2 and PrCl3 doping on the properties of ZnS phosphor……………………………………….…………...………..48
4-6-1 XRD analysis…………………………………….…...………..49
4-6-2 CIE coordinates analysis…………….…………..…..…………50
4-6-3 TEM analysis……………………………………...…...………50

Chapter 5 Conclusion................................................................................52
References..................................................................................................53
[1] 蘇勉增, 吳世康, 發光材料, 四卷.
[2] Philip D. Rack, Paul H. Holloway, Materials Science and Engineering R21(1998) 171.
[3] E. Bringuier, Journal of Applied Physics 75(1994)4291.
[4] A. G. Fischer, Journal of The Electrochemical Society (1963)733.
[5] K. E. Waldrip, J. S. Lewis, Q. Zhai, M. Puga-Lambers, M. R. Davidson, P. H. Holloway, S.-S. Sun, Journal of Applied Physics 89 (2001)1664.
[6] Y. Inoue, K. Kobayashi, K. Tanaka, S. Okamoto, Y. Tsuchiya, K.
Takizawa, IEEE Transactions on Broadcasting 42 (1993) 259.
[7] Yoshimasa. A. Ono, “Electroluminescent display” (1995).
[8] Skoog, Holler, Nieman, 1992, Principles of Instrumental analysis, fifth edition, Saunders college Publishing.
[9] G. Blasse, B. C. Grabmaier, 1994, Luminescent Materials, Springer
Verlag, Berlin Heidelberg, Germany.
[10] D. Denzler, M. Olschewski, K. Sattler, Journal of Applied Physics 84 (1998) 2841.
[11] W. Kong, J. Fogarty, and R. Solanki, R. T. Tuenge, Journal of Applied Physics 66 (1995) 419.
[12] G.A. Martinez-Castanon, J.R. Martinez-Mendoza, Facundo Ruiz,
Jesus Gonzalez-Hernandez, Inorganic Chemistry Communications 10 (2007) 531.
[13] E. Mohagheghpour, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Jafarbeglou, D. Bizari, H. Eslami, Materials Science and Engineering (2009).
[14] Hayato TAKAHASHI, Tetsuhiko ISOBE, Japanese Journal of Applied Physics 44 (2005) 922.
[15] S.A.M. Lima, F.A. Sigoli, M.R. Davolos, M. Jafelicci Jr, Journal of Alloys and Compounds 344 (2002) 280.
[16] W. Wang, F. Huang, Y. Xia, A. Wang, Journal of Luminescence 128 (2008) 610.
[17] A. H. Kitai, “Solid State Luminescence”, CHAPMAN&HALL, London , U. K. (1993)
[18] M. J. Webber, Phosphor Handbook, CRC Press, Boca Raton (1999).
[19] S.O. Kasap, 2003年9月 光電子學與光子學-原理與應用, 初版一刷, 全威圖書, 台北巿
[20] R. L. Coble, 1961, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, Journal of Applied Physics 32 787.
[21] Su-Hua YANG, Meiso YOKOYAMA, Japanese Journal of Applied Physics 41(2002)5609.
[22] W. W. Fuqiang Huang, Y. Xia, A. Wang, Journal of Luminescence 128 (2008).
[23] S. Arora, S. S. Manoharan, Materials Chemistry and Physics 110 (2008) 34.
[24] W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Journal of Crystal Growth 279 (2005) 454.
[25] R. Sarkar, C.S. Tiwary, P. Kumbhakar, S. Basu, A.K. Mitra, Physica E (2008).
[26] P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T. Ramakrishna Reddy , R.W. Miles, Solid State Sciences 11 (2009) 224.
[27] G. Lakshminarayana, Jianrong Qiu, Journal of Alloys and Compounds 476 (2009) 470.
[28] Sang-Do Hana, Ishwar Singhb, Devender Singhb, You-He Leea,
Gaytri Sharmaa, Chi-Hwan Hana, Journal of Luminescence 115 (2005) 97.
[29] Jun Woo LEE, Kyoungah CHO, Hyunsuk KIM, Jin-Hyoung KIM, Byoungjun PARK, Taeyong NOH, Sung Hyun KIM, Sangsig KIM, Japanese Journal of Applied Physics 44(2005)7694.
[30] Te-Ju Lee, Li-Yang Luo, Bing-Ming Cheng, Wei-Guang Diau, Teng-Ming Chen1, Applied Physics Letters 92(2008).
[31] M.G. Brik, A. Majchrowski, I.V. Kityk, T. Łukasiewicz, M. Piasecki, Journal of Alloys and Compounds 465 (2008) 24.
[32] S. Wageh, Zhao Su Linga, Xu Xu-Rong, Journal of Crystal Growth 255 (2003) 332.
[33] Zhenwei Tao, Xiaoyan Fei, Qing Zhou, Xibin Yu, Jie Liu, Shiping Yang, Liangzhun Yang, Journal of Alloys and Compounds 470 (2009) 536.
[34] Yunchao Li, Xiaohong Li, Chunhe Yang, Yongfang Li, Journal of Physical Chemistry 108 (2004) 16002.
[35] Zewei Quan, Zhenling Wang, Piaoping Yang, Jun Lin, Jiye Fang, Inorganic Chemistry 46(2007)1354.
[36] Luo, Duan, Min Ye, Zhang, and Li, Journal of Physical Chemistry 112(2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top