(3.80.6.131) 您好!臺灣時間:2021/05/15 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳家興
研究生(外文):Jia-Xing Chen
論文名稱:氧化鋅系螢光粉的備製及藉由摻雜改善螢光粉的發光特性
論文名稱(外文):Preparation and improvement in luminescence property of ZnO-based phosphors by doping process of phosphors
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:105
中文關鍵詞:氧化鋅固態燒結螢光粉光激發
外文關鍵詞:ZnOsolid-state reaction methodphosphorexcitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本實驗藉由固態燒結法合成氧化鋅系螢光粉。實驗所使用的掺雜物包括鉀、鎢、鋰及鎵化合物。首先我們改變掺雜物的種類,接著再改變掺雜物的摻雜濃度。藉由光激光光譜儀得知最佳摻雜濃度後,隨後改變其燒結溫度及時間,所得到之螢光粉利用研磨機再加以研磨,經由改變研磨頻率及時間,以得到顆粒較細小之螢光粉。
藉由了解不同燒結溫度及時間的長短,對螢光粉特性所造成的影響;不同研磨頻率及時間對螢光粉顆粒表面型態及結構對發光特性的影響;從實驗結果可知合成參數確實是會影響螢光粉之發光波長及強度。最後將最佳條件下所製作之螢光粉製作成電激發光元件,以評估螢光粉之電激光亮度,及色座標位置。此外,螢光粉之光激光量測的激發源波長固定在325 nm,放射光皆以可見光區域為主。
In this study, the ZnO-based phosphor was synthesized by solid-state reaction method. Potassium (K), tungsten (W), lithium (Li) and gallium (Ga) compound were used as activators and fluxes.

By understanding the different sintering temperature and time of phosphors on the impact properties; different frequency and time of abrasive powder particles on the surface of fluorescent patterns and structural characteristics of the luminescence; the experimental results from the synthesis parameters, we can see indeed phosphors will affect the wavelength and intensity of the luminescence. Finally, under the best conditions for the production of phosphors into electroluminescence to stimulate the production of optical components, to assess the power of fluorescent powder laser brightness, and color coordinates of the location. In addition, the fluorescent powder-ray laser measurement of the excitation source wavelength fixed at 325 nm, always visible light radiation dominated region.
誌 謝
摘要 I
Abstract II
Chapter 1 1
Introduction 1
1-1 Brief introduction of the phosphors 1
1-2 Motive of this study 3
Chapter 2 4
Basic theory 4
2-1 Luminescence mechanism 4
2-1-1 Category and application of the luminescence 4
2-1-2 Fluorescence and phosphorescence 4
2-2 Types and principles of the luminescence center 5
2-3 Emission theory and process of the phosphor 8
2-3-1 Absorption and excitation of the phosphor 8
2-3-2 Fluorescence and nonradiative transfer 9
2-4 Properties of phosphors 11
2-4-1 Emission efficiency of phosphors 11
2-4-2 luminescence property of the phosphor 12
2-5 ZnO phosphors 13
2-5-1 Basic property 13
2-5-2 Luminescence spectrum of the ZnO phosphors 14
2-5-3 Application of the ZnO phosphor 15
2-6 Solid-state reaction method 15
Chapter 3 19
Experiment 19
3-1 Source material 19
3-2 Experiment procedures 19
3-2-1 Fabrication of ZnO phosphor 19
3-2-2 Substrate preparation 20
3-3 Measurement system 21
3-3-1 SEM 21
3-3-2 EDX 21
3-3-3 XRD 21
3-3-4 XPS 22
3-3-5 PL 23
3-3-6 CIE coordinates 23
Chapter 4 24
Results and Discussion 24
4-1 The influence of Li2CO3 doping on the properties of ZnGa2O4 phosphor 24
4-1-1 The parameters of Li+-doped ZnO:Ga3+ phosphor with different doping concentrations 24
4-1-2 The analysis of Li+-doped ZnO:Ga3+ phosphor with different doping concentrations 25
4-1-3 The parameters of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering temperatures 28
4-1-4 The analysis of Li+-doped ZnO:Ga3+ phosphor with different sintering temperatures 28
4-1-5 The parameters of Li+-doped ZnO:Ga3+ phosphor with different sintering time 29
4-1-6 The analysis of Li+-doped ZnO:Ga3+ phosphor with different sintering time 29
4-2 The influence of K+-doping on the properties of ZnWO4 phosphor 30
4-2-1 The parameters of K+-doped ZnWO4 phosphor prepared with different doping concentrations 30
4-2-2 The analysis of K+-doped ZnWO4 phosphor with different doping concentrations 31
4-2-3 The parameters of K+-doped ZnWO4 phosphor with different sintering temperatures 32
4-2-4 The analysis of K+-doped ZnWO4 phosphor with different sintering temperatures 33
4-2-5 The parameters of K+-doped ZnWO4 phosphor prepared with different sintering time 35
4-2-6 The analysis of K+-doped ZnWO4 phosphor with different sintering time 35
4-2-7 The parameters of K+-doped ZnWO4 phosphor prepared with different grinding frequency 37
4-2-8 The analysis of K+-doped ZnWO4 phosphor prepared with different grinding frequency 37
4-2-9 The parameters of K+-doped ZnWO4 phosphor prepared with different grinding time 38
4-2-10 The analysis of K+-doped ZnWO4 phosphor prepared with different grinding time 38
4-2-11 The parameters of K+-doped ZnWO4 phosphor prepared with different annealing temperatures 39
4-2-12 The analysis of K+-doped ZnWO4 phosphor prepared with different annealing temperatures 40
Chapter 5 41
Conclusion 41
References 43
Fig.1-1 Energy transfer diagram of the phosphor. H: host material. A: activator. S: sensitizer. 45
Fig. 2-1 Molecule energy level diagram for a PL system. 45
Fig. 2-2 Configuration coordinate diagram of the phosphor. 46
Fig. 2-3 Energy transform diagram of excitation energy. 46
Fig. 2-4 Diagram of Stokes shift. 47
Fig. 2-5 Nonradiative transitions in the configurational coordinate diagram: (a) strong coupling, (b) weak coupling, and (c) combination of both. 47
Fig. 2-6 Diagram of the poisoning phenomenon. 48
Fig. 2-7 Diagram of the concentration quenching effect. H: host material, A: activator, and P: poison. 48
Fig. 2-8 Diagram of 4f level transition. (For example: Eu3+) 49
Fig. 2-9 Cell structure and material properties of ZnO. 49
Fig. 2-10 Energy levels of the intrinsic defects in ZnO thin film. 50
Fig. 2-11 Energy level diagram found by defects in ZnO compound. 50
Fig. 2-12 Energy level scheme of the Ce3+ ion: SO: spin-orbit coupling. △: crystal-field effect. 51
Fig. 2-13 Diffusion mechanism in the sintering process. 51
Fig. 2-14 Three stages of sintering. (a) The start of initial stage, (b) initial state, (c) intermediate stage, and (d) final stage. 52
Fig. 3-1 Flow-chart of the solid state sintering method. 53
Fig. 3-2 Image of HITACHI F-7000 fluorescence spectrophotometer. 53
Fig. 3-3 Image of CS-100A spectra scan spectrometer. 54
Fig. 4-1 XRD patterns of Li+-doped ZnO:Ga3+ phosphor prepared with different Li2CO3 doping concentrations. 55
Fig. 4-2 FWHM of Li+-doping ZnO:Ga3+ phosphor with different Li2CO3 doping concentrations. 55
Fig. 4-3 SEM images of Li+-doping ZnO:Ga3+ phosphor prepared with different Li2CO3 doping concentrations. (Magn: 3000x) 56
Fig. 4-4 EDX analyses of ZnO:Ga3+ phosphor doped with different concentration of Li2CO3; (a) 1 mol%, (b) 3 mol%, (c) 5 mol%, (d) 7 mol%, (e) 9 mol% and (f) 15 mol%. 57
Fig. 4-5 Relationships of Zn and Ga atomic ratios with the doping concentration of Li2CO3. 58
Fig. 4-6 PL spectra of Li+-doped ZnO:Ga3+ phosphor prepared with different Li2CO3 doping concentrations (λEX = 325nm). 58
Fig. 4-7 CIE coordinates of Li+-doped ZnO:Ga3+ phosphor prepared with different Li2CO3 doping concentrations. 59
Fig. 4-8 XRD patterns of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering temperatures. 60
Fig. 4-9 SEM images of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering temperatures. (Magn: 3000x) 60
Fig. 4-10 PL spectra of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering temperatures (λEX = 325nm). 61
Fig. 4-11 CIE coordinates of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering temperatures. 61
Fig. 4-12 XRD patterns of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering time. 62
Fig. 4-13 SEM images of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering time (Magn: 3000x). 62
Fig. 4-14 PL spectra of Li+-doping ZnO:Ga3+ phosphor prepared with different sintering time (λEX = 325nm). 63
Fig. 4-15 CIE coordinates of Li+-doped ZnO:Ga3+ phosphor prepared with different sintering time. 63
Fig. 4-16 XRD patterns of K+-doped ZnWO4 phosphor prepared with different KCl doping concentrations. 64
Fig. 4-17 SEM images of K+-doped ZnWO4 phosphor prepared with different KCl doping concentrations (Magn: 3000x). 64
Fig. 4-18 PL spectra of K+-doped ZnWO4 phosphor prtepared with different KCl doping concentrations (λEX = 325nm). 65
Fig. 4-19 EDX analyses of ZnWO4 phosphor doped with KCl concentrations of (a) 2 mol%, (b) 5 mol%, (c) 7 mol%, (d) 10 mol%, (e) 12mol% and (f) 15 mol%. 66
Fig. 4-20 EDX analyses of ZnWO4 phosphor doped KCl concentrations of (g) 17 mol%, (h) 20 mol%, (i) 40 mol% and (j) 60 mol%. 67
Fig. 4-21 Relationships of Zn and K atomic ratios with the doping concentration of KCl. 68
Fig. 4-22 CIE coordinates of K+-doped ZnWO4 phosphor prepared with different KCl doping concentrations. 68
Fig. 4-23 XRD patterns of K+-doped ZnWO4 phosphor prepared with different sintering temperatures. 69
Fig. 4-24 SEM images of K+-doped ZnWO4 phosphor prepared with different sintering temperatures (Magn: 3000x). 69
Fig. 4-25 PL spectra of K+-doped ZnWO4 phosphor prepared with different sintering temperatures (λEX = 325nm). 70
Fig. 4-26 CIE coordinates of K+-doped ZnWO4 phosphor prepared with different sintering temperatures. 70
Fig. 4-27 XRD patterns of K+-doped ZnWO4 phosphor prepared with different sintering time. 71
Fig. 4-28 SEM images of K+-doped ZnWO4 phosphor prepared with different sintering time (Magn: 3000x). 71
Fig. 4-29 PL spectra of K+-doped ZnWO4 phosphor prepared with different sintering time (λEX = 325nm). 72
Fig. 4-30 CIE coordinates of K+-doped ZnWO4 phosphor prepared with different sintering time. 72
Fig. 4-31 SEM images of K+-doped ZnWO4 phosphor prepared with different grinding frequency (grinding time: 2 min). 73
Fig. 4-32 PL spectra of K+-doped ZnWO4 phosphor prepared with (5 Hz, 2 min) and without grinding. 74
Fig. 4-33 PL spectra of K+-doped ZnWO4 phosphor prepared with (10 Hz, 2 min) and without grinding. 74
Fig. 4-34 PL spectra of K+-doped ZnWO4 phosphor prepared with (15 Hz, 2 min) and without grinding. 75
Fig. 4-35 PL spectra of K+-doped ZnWO4 phosphor prepared with (20 Hz, 2 min) and without grinding. 75
Fig. 4-36 PL spectra of K+-doping ZnWO4 phosphor prepared with (25 Hz, 2 min) and without grinding. 76
Fig. 4-37 PL spectra of K+-doping ZnWO4 phosphor prepared with (30 Hz, 2 min) and without grinding. 76
Fig. 4-38 Comparative luminescence for different grinding frequency. 77
Fig. 4-39 SEM images of K+-doped ZnWO4 phosphor prepared with different grinding time (grinding frequency : 20 Hz) 78
Fig. 4-40 PL spectra of K+-doped ZnWO4 phosphor prepared with (20 Hz, 1 min) and without grinding. 79
Fig. 4-41 PL spectra of K+-doped ZnWO4 phosphor prepared with (20 Hz, 2 min) and without grinding. 79
Fig. 4-42 PL spectra of K+-doped ZnWO4 phosphor prepared with (20 Hz, 3 min) and without grinding. 80
Fig. 4-43 PL spectra of K+-doping ZnWO4 phosphor prepared with (20 Hz, 4 min) and without grinding. 80
Fig. 4-44 PL spectra of K+-doping ZnWO4 phosphor prepared with (20 Hz, 5 min) and without grinding. 81
Fig. 4-45 Comparative luminescence for different grinding time 81
Fig. 4-46 PL spectra of K+-doped ZnWO4 phosphor prepared with different grinding and annealing conditions. 82
Fig. 4-47 PL spectra of K+-doped ZnWO4 phosphor prepared with different grinding and annealing conditions. 82
Fig. 4-48 PL spectra of K+-doping ZnWO4 phosphor prepared with different grinding and annealing conditions. 83
Fig. 4-49 PL spectra of K+-doping ZnWO4 phosphor prepared with different grinding and annealing conditions. 83
Fig. 4-50 Comparative luminescence for phosphor with different grinding and annealing conditions. 84
Table 4-1 XRD peak data table of Li+-doping ZnO:Ga3+ phosphor with different doping concentrations. 85
Table 4-2 EDX of Li+-doping ZnO:Ga3+ composition ratio with different doping concentrations. 86
Table 4-3 EDX of K+- doping ZnWO4 composition ratio with different doping concentrations. 87
Table 4-4 EDX of K+- doping ZnWO4 composition ratio with different doping concentrations 88
Table 4-5 Comparative table of different grinding frequency. 89
Table 4-6 Comparative table of different grinding time 89
Table 4-7 Grinding and annealing the percentage of luminous intensity comparison table. 90
[1]S.Q. Zhao, Y.L. Zhou, K. Zhao, Z. Liu, P. Han, S.F. Wang, W.F. Xiang, Z.H. Chen, H.B. Lu, B.L. Cheng, G.H. Yang, Physica B 373 (2006) 154.
[2]T.H. Zheng, Z.Q. Li, J.K. Chen, Kai Shen, K.F. Sun, Applied Surface Science 252 (2006) 8482.
[3]K. Vanheusden, C. Seager, W. Warren, D. Tallant, J. Voigt, Appl.Phys. Lett. 68 (1996) 403.
[4]Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, Appl.Phys. 79 (1996) 7983.
[5]Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, Appl.Phys. 79 (1996) 7983.
[6]J. Lim, K. Shin, H.W. Kim, C. Lee, J. Lumin. 109 (2004) 181.
[7]S. A.M. Lima, F. A. Sigoli, M. R. Davolos, M. Jafelicci Jr, Journal of Alloys and Compounds 344 (2002) 280.
[8]P. L. Chen, X. Y. Ma, D. R. Yang, Journal of Alloys and Compounds 431 (2007) 317.
[9]Z. Sofiani1, B. Derkowska P. Dalasiński, Z. Lukasiak, K. B artkiewicz, W. Bała, M. Addou A. Lamrani Mehdi, L. Dghughi I. V. Kityk and B. Sahraoui1, ICTON 2005 267 Th.A2.8.
[10]M. Liu, X.Q. Wei, Z.G. Zhang, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhaung, B.Y. Man, Applied Surface Science 252 (2006) 4321.
[11]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983.
[12]L.V. Azaroff, Introduction to Solids, McGraw-Hill, 1960, pp 371-372.
[13]N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst.Growth 130 (1993)269.
[14]J. Rajeswari, B. Viswanathan,T. K. Varadarajan, Materials Chemistry and Physics 106 (2007) 168.
[15]Y. Y Li, Y. X. Li, Y.L. Wu, W.L. Sun, Journal of luminescence 126 (2007) 171.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊