(3.236.100.86) 您好!臺灣時間:2021/05/06 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭博仁
研究生(外文):Bo-Ren Zheng
論文名稱:溶膠凝膠法製備鈦酸鍶鋇薄膜之介電調變特性
論文名稱(外文):Dielectric Tunable Characteristics of Sol-Gel Derived BST Thin Films
指導教授:劉志益
指導教授(外文):Chih-Yi Liu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:88
中文關鍵詞:鈦酸鍶鋇損耗正切
外文關鍵詞:BSTLOSS TANGENT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以化學溶膠-凝膠方式製備鈦酸鍶鋇薄膜,將自行配製之鈦酸鍶鋇前驅物溶液,以旋轉塗佈(spin-coating)方式長成約數百奈米鈦酸鍶鋇薄膜於鉑(Pt)底電極上,並使用電子槍蒸鍍鉑於鈦酸鍶鋇薄膜上,即為上電極,完成金屬/絕緣體/金屬(MIM)結構以進行電性量測。薄膜經由不同的結晶熱處理條件,包括溫度、氣體、電流退火、照射UV光及施加不同AC電場等等。物性分析方面,藉由掃描式電子顯微鏡、X光繞射圖譜分析薄膜表面微結構和晶向結構 ; 在電性量測部分,則量測其電流電壓與電容電壓特性,並關聯其物性作以分析。電容與損耗正切均會隨著頻率而產生頻散效應,由修正電路模型可模擬出量測的頻散效應,並加以避免。
In this study, the (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on Pt/Ti/SiO2/Si substrates by the sol-gel method. The BST thin films were prepared with various process parameters including process temperature, UV-assisted annealing, current annealing, and AC electric field annealing. Then, the Pt top electrodes were deposited by E-beam evaporator to fabricate the metal/insulator/metal (MIM) structures for electrical measurement. The surface morphology and microstructures of the BST film was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrical and dielectric properties were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The modified circuit model of BST-based device was proposed to explain the frequency dispersion of capacitance-voltage (C-V) measurement.
中文摘要……………………………………………………………………………….Ⅰ
英文摘要……………………………………………………………………………….Ⅱ
總目錄………………………………………………………………………………….Ⅲ
表目錄…………………………………………………………………………………. V
圖目錄………………………………………………………………………………….VI
第一章 序論 1
1-1前言 1
1-2研究動機 2
第二章 相關文獻 3
2-1鐵電材料特性 3
2-1-1鐵電性質 3
2-1-2極化機制 5
2-1-3電滯特性 8
2-1-4居里溫度(Tc) 9
2-1-5介電損失(Dielectric loss) 11
2-1-6漏電流機制分析(Leakage current) 13
2-2鈦酸鍶鋇(Ba,Sr)TiO3特性介紹 15
2-3薄膜鍍膜技術 16
2-3-1物理氣相沉積法(PVD) 16
2-3-2化學氣相沉積法(CVD) 17
2-3-3液相化學鍍膜(Solution chemical) 17
2-4溶膠-凝膠法(Sol-gel)原理與優點 18
2-5電極材料 19
2-6 添加異質對薄膜的影響 20
2-7 BST材料應用性 21
第三章 實驗步驟與分析方式 22
3-1 基板之前處理 22
3-2 溶液之製備 24
3-2-1 前驅物溶液準備 24
3-2-2 BST前驅物溶液配製過程 24
3-3 鈦酸鍶鋇薄膜鍍膜流程 25
3-4 薄膜改質處理方式 27
3-4-1 管狀爐通不同氣體對薄膜影響 27
3-4-2 施加AC電場對薄膜影響 28
3-4-3 照射紫外光(UV)對薄膜影響 28
3-4-4 電流退火方式對薄膜影響 28
3-5 薄膜之MIM結構 29
3-6 薄膜之物性量測 30
3-6-1 X光繞射(X-ray diffraction,XRD)分析 30
3-6-2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 31
3-7 薄膜之電性量測 32
3-7-1 電容-電壓(C-V)量測 33
3-7-2 電流-電壓(I-V)量測 34
第四章 結果與討論 35
4-1鈦酸鍶鋇溶液特性探討 35
4-1-1配製濃度的影響 35
4-1-2配製比例的影響 37
4-1-3配製濕度的影響 39
4-1-4配製溫度的影響 39
4-1-5配置時間的影響 40
4-2不同熱解方式對薄膜的影響 41
4-2-1 高溫爐 42
4-2-1-1 表面顯微結構 42
4-2-1-2 不同熱解溫度對薄膜的影響 46
4-2-2 管狀爐退火 51
4-2-2-1 施加不同氣氛 51
4-2-2-2 施加AC電場 54
4-2-3 Ultraviolet(UV)輔助退火 56
4-2-4電流退火 59
4-3寄生效應對薄膜量測之影響 66
4-3-1薄膜電性量測 66
4-3-2薄膜電性模擬值 68
第五章 結論與未來展望 73
5-1結論 73
5-2未來展望 75
參考文獻 76
[1] 呂函庭, “鐵電薄膜介電特性之新型態量測方法與鐵電記憶場效電晶體之元件模 型”,國立交通大學電子工程學系電子研究所博士論文,2002
[2] 謝煜弘,“電子材料”,四版,新文京開發出版社,台北,2005
[3] 林偉雄,“鋁基電極鈦酸鍶鋇薄膜電容研製”,國立交通大學機械工程研究所碩士論 文,2007
[4] A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh N. Setter, “Ferroelectric Materials for Microwave Tunable Applications,” Journal of Electroceramics, vol. 10, pp.1, 2003.
[5] M. Ohring, “The Materials Science of Thin Films,” Boston, MA: Academic, 1992, pp.95.
[6] H. S. Nalwa, “Handbook of Thin Film Materials,” Academic Press, vol. 3, 2001.
[7] S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era,” vol. 1, 1986.
[8] U. Syamaprasad, R. K. Galgali, B. C. Mohanty, “Dielectric properties of the Ba1-xSrxTiO3 system,” Mater. Lett., vol. 7, p.3482, 1998.
[9] M. W. Cole, P. C. Joshi, and M. H. Ervin, “La doped Ba1-xSrxTiO3 thin films for tunable device applications,” J. App. Phys., vol. 89, no. 11 pp.6336, Feb. 2001.
[10] J. Gong, J. Cheng, W. Zhu, S. Yu, W. Wu, and Z. Meng, “Improvement in Dielectric and Tunable Properties of Fe-Doped Ba0.6Sr0.4TiO3 Thin Films Grown by Pulsed-Laser Deposition,” IEEE Trans. Ultrason. Ferroelectr. Freq. vol. 54, no. 12, pp.2579, Dec. 2007.
[11] W. Y. Park, C. S. Hwang, J. D. Baniecki, M. Ishii, K. I. Kurihara, and K. Yamanaka, “Unusual thickness dependence of permittivity and elastic strain in Sc modified epitaxial (Ba,Sr)TiO3 thin films,” Appl. Phys. Lett., vol. 92, pp.102902, Mar. 2008.
[12] M. W. Cole, E. Ngo, S. Hirsch, M. B. Okatan, and S. P. Alpay, “Dielectric properties of MgO-doped compositionally graded multilayer barium strontium titanate films,” Appl. Phys. Lett., vol. 92, pp.072906, Feb. 2008.
[13] Y. Masaki, I. P. Koutzarov, H. E. Ruda, M. Farrell, and S. Marett, “Gold-Particle-Enhanced Crystallite Growth of Thin Films of Barium Titanate Prepared by the Sol-Gel Process,” J. Am. Ceram. Soc., vol. 81, pp.1074, April. 1998.
[14] A. Srivastava, D. Kumar, and R. K. Singh, H. Venkataraman, and W. R. Eisenstadt, “Improvement in electrical and dielectric behavior of (Ba,Sr)TiO3 thin films by Ag doping,” Phys. Rev. B, vol. 61, pp.7305, Mar. 2000.
[15] M. Copel, J. D. Baniecki, P. R. Duncombe, D. Kotecki, R. Laibowitz, D. A. Neumayer, T. M. Shaw, “Compensation doping of Ba0.7Sr0.3TiO3 thin films,” Appl. Phys. Lett., vol. 73, no. 13, pp.1832, Sep. 1998.
[16] S.I. Jang and H. M. Jang, “Structure and electrical properties of boron-added (Ba,Sr)TiO3 thin films fabricated by the sol-gel method,” Thin Solid Films, vol. 330, pp.89, Mar. 1998.
[17] K. T. Kim and C. I. Kim, “Structure and dielectric properties of Bi-doped Ba0.6Sr0.4TiO3 thin films fabricated by sol-gel method,” Microelectron. Eng., vol. 66, pp.835, 2003.
[18] T. Zhang, J. Wang, B. Zhang, R. Pan, N. Wan, “The effect of Ho doping on the microstructure and optical properties of Ba0.65Sr0.35TiO3 thin films,” Microelectron. Eng., vol. 83, pp.2446, June. 2006.
[19] S. Y. Chen, H. W. Wang, L. C. Huang, “Electrical Properties of Mg/La , Mg/Nb Co-Doped (Ba0.7Sr0.3)TiO3 Thin Films Prepared by Metallo-Organic Deposition Method,” Jpn. J. Appl. Phys., vol. 40, pp.4974, April. 2001.
[20] M. W. Cole, E. Ngo, S. Hirsch, M. B. Okatan, and S. P. Alpay, “Dielectric properties of MgO-doped compositionally graded multilayer barium strontium titanate films,” Appl. Phys. Lett., vol. 92, pp.072906, Feb. 2008.
[21] H. Nakayama, S. Suzuki, S. Miyahara, and H. Suzuki, “Influence of electric-field-assisted annealing on orientation of Pb(Zr0.5,Ti0.5)O3 thin films,” Jpn. J. Appl. Phys., vol. 43, pp.242, Jan. 2004.
[22] H. Nakayama, O. Sugiyama, T. Mano, Y. Shibuya, Y. Hoshi, and H. Suzuki, “Fabrication and electrical properties of (Bi,La)4Ti3O12 thin films deposited with electric-field-assisted annealing,” Jpn. J. Appl. Phys., vol. 44, pp.6947, Sep. 2005.
[23] A. Podpirka, M. W. Cole, and S. Ramanathan, “Effect of photo irradiation on structural, dielectric, and insulating properties of Ba0.60Sr0.40TiO3 thin films,” Appl. Phys. Lett., vol. 92, pp.212906, May. 2008.
[24] 中國材料科學學會,“材料分析”,四版,汪建民,民全書局,台北, 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔