(18.204.227.34) 您好!臺灣時間:2021/05/19 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳郁琪
研究生(外文):Yu-Chi Chen
論文名稱:腔內倍頻綠光光纖雷射之設計與研製
論文名稱(外文):Design and Experimentation of Intra-Cavity Frequency Doubling Green Fiber Laser
指導教授:施天從
指導教授(外文):Tien-Tsorng Shih
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:光纖雷射光學設計倍頻
外文關鍵詞:fiber laserOptical designsecond harmonic generation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,利用高斯光束之光追跡計算和光纖雷射模擬設計一新式腔內倍頻雷射系統。首先探討光對光轉換效率與非線性晶體的相關係數,如相位匹配角度、可接受角度及允許入射之波長範圍。以基頻輸入功率1 Watt之KDP晶體與BBO晶體倍頻轉換效率分別可達0.13%與0.37%。本系統以透鏡組組合構成倍頻光學架構以取代一般光纖雷射架構末端的低反射光纖布拉格光柵(fiber Bragg grating; FBG)形成光纖雷射腔內倍頻共振腔。利用ABCD矩陣法設計倍頻光學架構,分析出符合腔內穩定的參數,再由光學軟體挑選實際適當的光追跡且耦合效率高之參數。最後以光纖模擬軟體分析光纖雷射腔內架構基頻功率及雙纖衣掺鐿光纖之最佳長度為6公尺,使整個腔內倍頻綠光光纖雷射之系統最佳化。同時針對所設計之腔內倍頻綠光光纖雷射架構作實驗分析與討論。
By using Gaussian beam ray tracing calculation and optical fiber laser simulation, and investigating the correlation coefficient between the conversion efficiency of second harmonic generation and frequency doubling crystal, such as the phase matching angle, acceptable angle and allowed incident wavelength range, this thesis proposes a brand new intra-cavity frequency doubling fiber laser system. The system designed by the paper is assembled by a lens system to form a second harmonic generation optical structure (SHG optical structure), which replaces the low-reflection optical fiber Bragg grating (FBG) of the end of the optical fiber laser structure to become an optical fiber laser intra-cavity frequency doubling structure. By using ABCD matrix, we design the SHG optical structure, and analyze the parameters meeting the intra-cavity stability. Through the software for optical system design, this thesis finds a practically suitable parameter with ray tracing and high coupling efficiency. Finally, the fundamental power of optical fiber intra-cavity structure and the optimal length is 6 meters of Yb-doped double clad fiber are simulated by means of the optical fiber simulation software in order to optimize the entire intra-cavity frequency doubling green-light optical fiber laser system. Focusing on the intra-cavity frequency doubling green-light optical fiber laser structure, this thesis has included experimental analysis and discussion.
中文摘要 --------------------------------------------------------------------------- I
英文摘要 --------------------------------------------------------------------------- Ⅲ
誌謝 --------------------------------------------------------------------------- Ⅴ
目錄 --------------------------------------------------------------------------- Ⅵ
表目錄 --------------------------------------------------------------------------- Ⅷ
圖目錄 --------------------------------------------------------------------------- Ⅸ
第一章 緒論--------------------------------------------------------------------- 1
1.1 研究背景--------------------------------------------------------------- 1
1.2 研究目的--------------------------------------------------------------- 3
1.3 文獻探討--------------------------------------------------------------- 3
1.4 論文架構--------------------------------------------------------------- 5
第二章 光纖雷射腔內倍頻之結構與理論分析--------------------------- 11
2.1 光纖雷射--------------------------------------------------------------- 11
2.1.1 雷射基本原理--------------------------------------------------------- 12
2.1.2 光纖布拉格光柵(fiber Bragg grating)----------------------------- 13
2.1.3 雙纖衣掺鐿光纖(Double-clad Ytterbium doped fiber; DCYDF)------ 14
2.2 高斯光束(Gaussian beam)------------------------------------------- 16
2.3 非線性光學與倍頻理論模擬分析--------------------------------- 21
2.3.1 非線性光學------------------------------------------------------------ 22
2.3.2 非線性晶體------------------------------------------------------------ 23
2.3.3 倍頻理論--------------------------------------------------------------- 25
2.3.4 相位匹配角度模擬分析--------------------------------------------- 29
2.3.5 可接受度角度模擬分析--------------------------------------------- 33
2.3.6 允許入射波長範圍模擬分析--------------------------------------- 34
第三章 光纖雷射腔內倍頻系統設計--------------------------------------- 50
3.1 模擬設計流程--------------------------------------------------------- 51
3.2 腔內倍頻光學架構設計--------------------------------------------- 51
3.2.1 KDP晶體之腔內倍頻光學架構設計------------------------------ 59
3.2.2 BBO晶體之腔內倍頻光學架構設計----------------------------- 62
3.3 腔內倍頻光學架構模擬之耦光效率分析------------------------ 63
3.4 光纖雷射腔內模擬--------------------------------------------------- 64
3.4.1 YDF之最佳長度模擬------------------------------------------------ 66
3.4.2 光纖雷射腔內功率模擬--------------------------------------------- 67
3.5 模擬結果討論--------------------------------------------------------- 68
第四章 腔內倍頻綠光光纖雷射實驗--------------------------------------- 90
4.1 泵浦雷射源模組------------------------------------------------------ 90
4.1.1 泵浦雷射二極體------------------------------------------------------ 90
4.1.2 驅動電路--------------------------------------------------------------- 91
4.2 腔內倍頻光纖雷射架構--------------------------------------------- 92
4.3 實驗結果與討論------------------------------------------------------ 94
第五章 結論與未來工作------------------------------------------------------ 107
參考文獻 --------------------------------------------------------------------------- 109
[1]T. H. Maiman, "Stimulated optical radiation in Ruby", Nature, vol. 187, p. 493, 1960.
[2]R. Zhou , Z. Cai, W. Wen, X. Ding, P. Wang, J. Yao, “High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity”, Opt. Commun., vol. 255, p.304, 2005.
[3]W. Baoshan, T. Huiming, P. Jiying, M. Jieguang, G. Lanlan, “Low threshold, actively Q-switched Nd3+:YVO4 self-Raman laser and frequency doubled 588 nm yellow laser”, Opt. Commun., vol. 271, p.555, 2007.
[4]W. Koechner, “Thermal Lensing in a Nd:YAG Laser Rod”, Appl. Opt., vol. 9, no. 11, p.2548, 1970.
[5]P. A. Franken, A. E. Hill, C.W. Peters, and G. Weinreich, “Generation of optical harmonics”, Phys. Rev. Lett., vol. 7, p.118, 1961.
[6]J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric”, Phys. Rev., vol. 127, p.1918, 1962.
[7]E. Snitzer, “Proposed Fiber Cavities for optical masers”, J. Appl. Phys., vol. 32, no. 1, p.36, 1961.
[8]H. W. Etzel, H. W. Gandy, R. J. Ginther, “Stimulated emission of infrared radiation from Ytterbium-activated silica glass”, Appl. Opt., vol. 1, p.534, 1962.
[9]R. J. Mears, L. Reekie, I. M. Juancey, D. N. Payne, “Low-noise Erbium-doped fiber amplifier operating at 1.54μ m”, Electron. Lett., vol. 23, no. 19, p.1026, 1987.
[10]Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power”, Electron. Lett., vol. 40, p.470, 2004.
[11]Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power”, Opt. Exp., vol. 12, p.6088, 2004.
[12]A. Liem, J. Limpert, H. Zellmer, A. Tunnermanm, V. Reichel, K. Morl, S. Jetschke, S. Unger, H.-R. Muller, J. Kirchhof, T. Sandrock, A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality”, Proc. Conference on Lasers and Electro-Optics, p.CPDD2, 2004.
[13]V. Gapontsev, D. Gapontsev, N. Platonov, 0. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness”, Proc. Conference on Lasers and Electro-Optics Europe, p.CJ1-1-THU, 2005.
[14]H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μ m Region,” IEEE J. of Selected Topics in Quant. Electron., vol. 1, no. 1, 1995.
[15]M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers” , Opt. Lett., vol. 13, p.805, 1988.
[16]K.I. Martin, W.A. Clarkson, D.C. Hanna, “3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser” , Opt. Lett., vol. 21, p. 875, 1996.
[17]M. D. Selker, T.J. Johnston, G. Frangineas, J.L. Nightingale, D.K. Negus, “>8.5 watts of single frequency 532 nm light from a diode pumped intracavity doubled ring laser”, Conference on Lasers and Electro-Optics, p.CPD-21, 1996.
[18]Jing Li, “All-solid-state continuous wave intracavity frequency-tripled Nd:YVO4–LiB3O4 blue laser using double-resonant approach”, Opt. Commun., vol. 277, p.114, 2007.
[19]Wang CQ, Reekie L, Chow YT, Gambling WA, “Efficient blue light generation from a diode laser pumped Nd:YAG laser”, Opt. Commun., vol. 167, no. 1-6, p. 155, 1999.
[20]T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, b-BaB2O4, and LiB3O5,” Applied Physics B, vol. 65, pp. 789-792, 1997.
[21]P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the F3/2-I9/2 transitions of Nd:YVO4 and Nd:YAG”, Optics Letters, vol. 25, no. 01, p.34, 2000.
[22]Czeranowsky C, Schmidt M, Heumann E, Huber G, Kutovoi S, Zavartsev Y, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm”, Opt. Commun., vol.205, p.361, 2002.
[23]Pierrou M, Laurell F, Karlsson H, Kellner T, Czeranowsky C, Huber G., “Generation of 740 mW of blue-light by intracavity frequency-doubling with a first-order quasi-phase-matched KTiOPO4 crystal”, Opt. Lett., vol.24, p.205, 1999.
[24]M. Bode, I. Freitag, A. Tunnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region”, Opt. Lett., vol. 22, no. 16, p.1220, 1997.
[25]Rui Zhou, Shuangchen Ruan, Chenlin Du, Jianquan Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser”, Opt. Commun., vol. 282, p.605, 2009.
[26]Fu-qiang Jia, Qing-hua Xue, Quan Zheng, Yi-kun Bu, Long-sheng Qian, “2.41W compact efficient CW blue light generation by intra-cavity frequency doubling of a compact Nd:YAG laser”, Optics & Laser Technology, vol. 39, p.1081, 2007.
[27]T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers” , J. Opt. Soc. Amer. B, vol. 3, p. 1175, 1986.
[28]V. Magni, G. Cerullo, S. D Silvestri, O. Svelto, L. J. Qian, and M. Danailov, “Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser“, Optical Society America, vol. 18, no. 24, p. 2111, 1993.
[29]M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarizaed modes in diode-pumped Nd:YAG lasers”, Opt. Lett., vol. 13, no. 10, p. 805, 1988.
[30]D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser” , IEEE J. Quantum Electronics, vol. QE-8, no. 2, p.235, 1972.
[31]W. Culshaw, J. Kannelaud, and J. E. Peterson, “Efficient frequency-doubled single- frequency Nd:YAG laser “, IEEE J. Quantum Electronics, vol. QE-10, p. 253, 1974.
[32]H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura,”Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quant. Electron., vol. 28, p. 1165, 1992.
[33]V. Evtuhov and A. E. Siegman, “A 'twisted-mode' technique for obtaining axially uniform energy density in a laser cavity”, Appl. Opt., vol. 4, p. 142, 1965.
[34]T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode pumped Nd:YVO4 microchip lasers”, Opt. Lett., vol. 16, p.1955, 1991.
[35] A.E. EI-Taher, Y.H. Tsang, D.J. Binks, “Intra-cavity second-harmonic and sum-frequency generation in a diode-pumped broadband Yb-doped fibre laser”, Opt. Commun., vol. 266, p.317, 2006.
[36]Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave output power”, opt. Express, vol.12, p. 6088, 2004.
[37]丁勝懋.雷射工程導論.中央圖書出版社,1992.
[38] A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fiber laser with two end-bundled pump”, Electron. Lett., vol. 32, no. 18, p. 1673, 1996.
[39] Muendel M. H., “Optimal inner cladding shapes for double-clad fibre lasers”, in Proc. Conference on Lasers and Electro-optics, p.CTuU2, 1996.
[40] A. Liu, K. Ueda, “The absorption characteristics of circular, offset, and rectangular double-clad fibers”, Opt. Commun., vol. 132, p.511, 1996.
[41] H. Zellmer, A. Tunnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30W output power,” Optical Amplifiers and Their Applications, vol. 16, p. 137, 1997.
[42] P. Leproux, S. Fevrier, V. Doya, P. Roy, and D. Pagnoux, “Modelingand optimization of double-clad fiber amplifiers using chaotic propagation of the pump”, Opt. Fiber Technol., vol. 6, p.324, 2001.
[43] D. Kouznetsov, J.V. Moloney, and E.M. Wright, “Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry,” J. Opt. Soc. Am. B, vol. 18, p.743, 2001.
[44] S. D. Jackson and Y. H. Li, “Multi-wavelength diode-cladding pumped Nd-doped germano-aluminosilicate fiber laser,” IEEE J. Quantum Electron., vol. 39, p.1118, 2003.
[45] A. Martinez-Rios, A. N. Starodumov, H. Po, Y. Wang, A. A. Demidov, and X. Li, “Efficient operation of double-clad Yb -doped fiber lasers with a novel circular cladding geometry,” Opt. Lett., vol. 28, no. 18, p.1642, 2003.
[46] L. Philippe, V. Doya, R. Philippe, P. Dominique, M. Fabrice, and L. Olivier, “Experimental study of pump power absorption along rare-earth-doped double clad optical fibers,” Opt. Comm., vol. 218, p.249, 2003.
[47] G. Xia, J. Duan, S. Zhao, and S. Dong, “Light propagation in the multimode double-clad erbium: ytterbium co-doped fiber: theory and experiment”, Opt. Laser Technol., vol. 36, no. 4, p. 273, 2004.
[48]Franken P. A., Hill A. E., Peters, C. W. and Weinreich, G., “Generation of Optical Harmonics”, Phys. Rev. Lett., vol. 7, no. 118, 1961.
[49]M. Bass, P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, “Optical mixing”, Phys. Rev. Lett., vol. 8, no. 18, 1962.
[50]G. Eckardt, R. W. Hellwarth, F. J. McClung, S. E. Schwartz, D.Weiner, and E. J.Woodbury, “Stimulated Raman Scattering From Organic Liquids”, Phys. Rev. Lett. vol. 9, p. 455, 1962.
[51]G. K. L. Wong and Y. R. Shen, “Transient Self-Focusing in a Nematic Liquid-Crystal in Isotropic Phase”, Physical Review Letters, vol. 32, p.527, 1974.
[52]叶佩弦.非線性光學物理.北京大學出版社. 2007
[53]J. Shah, “Ultrafast Luminescence Spectroscopy UsingSum Frequency Generation”, IEEE J. Quant. Electron., vol. 24, p. 276, 1988.
[54]K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4”, IEEE J. Quant. Electron., vol. QE-22, p. 1013, 1986.
[55]Yairiv &Yeh.Optical Waves in Crystals.NY: Wiley, 1984.
[56]http://www.liekki.com
[57]http://www.lumics.com
[58]http://www.aofr.com
[59]http://www.teamwavelength.com
[60]http://www.meanwellusa.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top