(44.192.66.171) 您好！臺灣時間：2021/05/18 01:24

詳目顯示:::

:

• 被引用:5
• 點閱:173
• 評分:
• 下載:21
• 書目收藏:3
 本論文針對高功因昇壓型轉換器不同控制法進行模擬與分析。首先建立一操作於定頻率、不連續導通（ＤＣＭ）模式之新型單位功因轉換器模型，並從理論上分析其運轉特性。接著以一實際應用為目標，計算主電路元件參數，再利用Matlab建立全系統之等效電路，進行不同運轉狀況之模擬。最後與傳統式控制（連續及臨界導通模式）之電路模擬結果比較，一方面驗證模型的可行性，另一方面突顯新型控制方法之特點，作為日後進一步發展及應用的具體參考。
 In this thesis, High-Power-Factor (HPF) boost converters using different control methods are simulated and analyzed. Firstly, a newly developed unit-power-factor correction circuit model is built, the circuit is operated in constant-frequency and Discontinuous Conduction Mode (DCM). The parameters of the converter are calculated, and the converter system including power circuit and controller is built by Matlab. Besides, two different converters with conventional control methods based on Continuous Conduction Mode (CCM) and Boundary Conduction Mode (BCM) are also simulated. Finally, different operation conditions are simulated for all converters, and their performances are compared with each other. The character of the converter using new control method are highlighted from the comparisons.
 中文摘要英文摘要誌謝目錄表目錄圖目第一章 緒論 1-1 研究背景與動機 1-2 研究方法與貢獻 1-3 論文內容大綱第二章 昇壓式轉換器工作原理 2-1 前言 2-2 昇壓式轉換器架構與操作模式 2-3 功率因數修正技術 2-3-1 平均電流控制法 2-3-2 峰值電流控制法 2-3-3 電壓隨耦控制法第三章 新型控制法理論分析與模型建立 3-1 新型控制法原理 3-2 昇壓式轉換器參數設計與模擬 3-3 功因修正控制系統模型建構第四章 傳統式控制與新型控制法之模擬比較 4-1 傳統類比式控制功因修正電路模擬 4-1-1連續模式功因修正電路 4-1-2不連續模式功因修正電路 4-2 新型控制法模擬 4-3 綜合性能比較第五章 結論與未來展望 5-1 結論 5-2 未來展望參考文獻
 [1]D. C. Lu, K. W. Cheng and S. Lee, "A Single-Switch Power-Factor-Corrected Converter with Reduced Repeated Power Processing," Proceedings of International Conference on Power Electronics and Drive Systems, Vol.1, Oct. 2001, pp. 26-32.[2]S. Luo, W. Qiu, W. Wu and I. Batarseh, "Flyboost Power Factor Correction Cell and a New Family of Single-Stage AC/DC Converters," IEEE Transactions on Power Electronics, Vol.20, No.1, Jan. 2005, pp. 25-34.[3]Y. Zheng and G. Moschopoulos, "Design Considerations for a New AC-DC Single-Stage Flyback Converter," Proceedings of Applied Power Electronics Conference and Exposition, Vol.1, Mar. 2006, pp. 400-406.[4]O. Garcia, J. A. Cobos, P. Alou, R. Prieto and J. Uceda, "Single Phase Power Factor Correction : A Survey," IEEE Transactions on Power Electronics, Vol.18, No.3, May 2003, pp. 749-755.[5]K. Rustom, W. Wu, W. Qiu and I. Batarseh, "Asymmetric Half Bridge Soft -Switching PFC Converter with Direct Energy Transfer," Proceedings of Power Electronics Specialists Conference, Vol.2, June 2002, pp. 676-681.[6]洪志泰，以數位信號處理器為控制單元之升壓型高功因電力轉換器之研製，國立成功大學碩士論文，2007年7月。[7]J. L. Lin, J. C. Hsieh and T. H. Tsai, “Dynamics Analysis of a Single-Stage Isolated High Power Factor Converter with a Magnetic Switch,” IEE Proceedings Electric Power Applications, Vol.52, No.1.3, May 2005, pp.643-652.[8]S. Park and T. M. Jahns, “A self-boost charge pump topology for a gate drive high-side power supply,” IEEE Transactions on Power Electronics, Vol. 20, Mar. 2005, pp. 300–307.[9]W.F. Zhang, G. Feng, Y. F. Liu and B. Wu, “Analysis and implementation of a new PFC digital control method,” Proceedings of Power Electronics Specialist Conference, Vol.1, June 2003, pp. 335-340.[10]H. W. Seong, K. B. Park, G. W. Moon and M. J. Youn, “Novel dual inductor-fed DC-DC converter integrated with parallel boost converter ,” IEEE of Power Electronics Specialists Conference, June 2008, pp. 2125-2131.[11]L. Huber, J. Yungtaek and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, Vol.23, No.3, May 2008, pp. 1381-1390.[12]梁適安譯，高頻交換式電源供應器原理與設計，全華科技圖書股份有限公司，2002年2月。[13]Texas Instruments, Datasheet of UC3854, 1999.[14]ON Semiconductor, Datasheet of MC33262, 2005.[15]S. Buso, P. Mattavelli, L. Rossetto and G. Spiazzi, “Simple digital control for improving dynamic performance of power factor preregulators,” IEEE Transactions on Power Electronics, Vol.13, No. 5, Sep. 1998, pp. 814–823.[16]J. Zhou, Z. Lu, Z. Lin, Y. Ren, Z. Qian, and Y. Wang, “A novel DSP controlled 2 kW PFC converter with a simple sampling algorithm,” IEEE Applied Power Electronics Conference and Exposition, Vol. 3, Fed.2000, pp. 434–437.[17]S. Bibian and H. Jin, “Digital control with improved performance for boost power factor correction circuits,” IEEE Applied Power Electronics Conference and Exposition, Vol. 1, March 2001, pp. 137–143.[18]M. Fu and Q. Chen, “A DSP based controller for power factor correction (PFC) in a rectifier circuit,” IEEE Applied Power Electronics Conference and Exposition, Vol. 1, March 2001, pp. 144–149.[19]X. Huang, T. Nergaard, J. S. Lai, X. Xu and L. Zhu, “A DSP based controller for high-power interleaved boost converters,” IEEE Applied Power Electronics Conference and Exposition, Vol. 1, Feb. 2003, pp. 327–333.[20]S. Kim and P. N. Enjeti, “Control of multiple single phase PFC modules with a single lowcost DSP,” IEEE Applied Power Electronics Conference and Exposition, Vol. 1, Feb. 2003, pp. 375–381.[21]J. Bastos, L. Farronato, H.P. Figueroa, D. Franzoni, S. Lentijo, A. Monti, A. Smith and X. Wu, “ FPGA-based control of power converter: comparing alternative solutions,” IEEE Applied Power Electronics Conference and Exposition, Vol. 3, Mar. 2005, pp. 1983-1989.[22]Z. Z. Ye and M.M. Jovanovic, “Implementation and Performance Evaluation of DSP-Based Control for Constant-Frequency Discontinuous -Conduction-Mode Boost PFC Front End, ” IEEE Transactions on Industrial Electronics, Vol. 52, NO.1, Feb. 2005, pp. 98-107.[23]龔應石、陳建武、徐永松，TMS320F/C24x DSP控制器原理與應用，滄海書局，2003年8月。[24]N. B. H. Youssef, K. Al-Haddad, “Application of the New Quasi-Linear Control Theory to the AC Current Shaping and DC Voltage Regulation of a Three-Phase boost-type AC/DC Vienna Converter Under Very Severe Operating Conditions,” IEEE 2007 International Conference on EUROCON, Sept. 2007, pp.1336-1343.[25]J. L. Lin, M. Z. Chang and S. P. Yang, “Synthesis and analysis for a novel single-stage isolated high power factor correction converter,” IEEE Transactions on Circuits and Systems, Vol. 52, No.9, Sept. 2005, pp. 1928-1939.[26]J. L. Lin, J. C. Hsieh, I and C. Yeh, “A novel ZCZVT soft-switching single-stage high power factor correction converter,” IEEE Asia-Pacific Conference on Circuits and Systems, Vol. 2, Dec. 2004, pp. 657-660.[27]劉文平，以DSP為基礎研製高功因高效率之並聯型交直流轉換器，國立高雄應用科技大學碩士論文，2007年7月。[28]J. Lazar and S.C´ uk, “Feedback loop analysis for AC/DC rectifiers operating in discontinuous conduction mode,” IEEE Applied Power Electronics Conference and Exposition, 1996, pp. 797–806.[29]鄭培璿，電力電子分析與模擬，全華科技圖書股份有限公司，2004年9月。[30]V. F. Pies and J. F. Silva, “Teaching nonlinear modeling, simulation, and control of electronic power converter using MATLAB/SIMULINK,” IEEE Transactions on Education, Vol.45 Aug.2002, pp. 253-261.[31]J. H. Su, J. J. Chen and D. S. Wu, “Learning feedback controller design of switching converters via MATLAB/SIMULINK,” IEEE Transactions on Education, Nov. 2002, pp. 307-315.[32]李宜達，控制系統設計與模擬，全華科技圖書股份有限公司，2006年9月。
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 以數位信號處理器為控制單元之升壓型高功因電力轉換器之研製 2 具序相脈波調光之LED室內照明研製 3 以DSP為基礎研製高功因高效率之並聯型交直流轉換器 4 照明白光LED調光特性及驅動電路之研究 5 高功率白光LED室內照明之整合式數位調控 6 以數位模糊控制為基礎之高功因昇壓式轉換器設計 7 具快速響應之高功因交∕直流轉換器 8 升壓式轉換器數位式高功因控制法之實現 9 具有軟式切換之功率因數修正器的研製 10 具改善動態性能之高功因升壓型AC/DC轉換器研製：以FPGA為控制核心 11 零電壓轉換昇壓型功因修正器設計與實現 12 交錯式臨界導通升壓型功因校正電路之研製 13 寬廣負載下具有較高效率及功率因數之數位式功率因數修正控制方法 14 數位高功因LED驅動器之研製 15 具功率因數校正之智慧型省能乾衣機

 無相關期刊

 1 升壓式轉換器數位式高功因控制法之實現 2 數位控制單相功率因數修正轉換器之研製 3 數位控制式功因修正器之研製 4 主動式功率因數修正器之設計與研製 5 數位式功率因數修正器的研製 6 諧波注入於功因控制之設計與分析 7 以DSP為基礎實現主動式功因修正控制電路之研究 8 800瓦定電流輸出之交錯式功率因數修正器研製 9 應用搭配平均計算公式之鋸齒波取樣策略於全數位化功率因數修正器之實現 10 定電流輸出之交錯式功率因數修正器研製 11 具能量回送與可調功因之數位化新型單相全橋式轉換器 12 以DSP為基底之高性能三相升降壓AC/DC轉換器 13 1-kW交錯式升壓型功率因數修正器研製 14 700W備援式伺服系統電源供應器之研製

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室