(3.235.191.87) 您好!臺灣時間:2021/05/13 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李立翔
研究生(外文):Li-Shiang Lee
論文名稱:海流發電系統之輸入功率迴歸模型建立及儲能轉換器設計
論文名稱(外文):Regression Modeling of Ocean Current Input Power Generation and Design of Energy Storage Converter
指導教授:郭見隆郭見隆引用關係蘇琨祥蘇琨祥引用關係
指導教授(外文):Jian-Long KuoKun-Shian Su
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:171
中文關鍵詞:永磁同步發電機儲能系統田口方法雙反應曲面法
外文關鍵詞:Permanent magnet synchronous generatorsTaguchi methodEnergy storage systemsResponse surface method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要目的為海流發電系統之研究,利用造流單元模擬海流狀況,藉以評估海流能對一永磁同步發電機之發電量的影響以及發電機特性。並藉由電機特性之參數進一步評估該海流發電系統之可行性。並且測試海流發電系統後級轉換器,其中包括儲能系統以及穩壓電路,提高系統之穩定度,轉換器之控制是由Microchip單晶片30F4011所控制。並且為了達到較佳發電機輸入功率效能,將利用田口方法及雙反應曲面法對海流發電系統之水流流速、扇葉內徑或扇葉等效半徑大小及齒輪比等參數進行最佳化設計。
This article focuses on the ocean current power generation system of research, making use of simulated ocean currents flow unit, with a view to assess the ocean currents can be of a permanent magnet synchronous generators of electricity, as well as characteristics of generators. And by the parameters of the electrical characteristics of the ocean currents to further assess the feasibility of power generation systems. And to conduct tests on the ocean current system-level power converters, including the energy storage system as well as the regulator circuit, to improve system stability, the converter control is 30F4011 from Microchip controlled by a single-chip. And in order to achieve better performance of input power generators, will use the Taguchi method and the dual response surface method for power system ocean currents velocity, diameter, or fan blades the size of the equivalent radius and gear ratio to optimize the design parameters.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 xi
符號定義(依照出現順序) xiii
1.1研究背景 1
1.2研究動機 3
1.3國內外技術發展現況與未來趨勢 3
1.3.1 水平軸向海流渦輪機 3
1.3.2 螺旋海流渦輪機 5
1.4 論文架構 6
第二章 海流發電系統發電機之摸擬分析 8
2.1 模擬海流水槽之實驗 8
2.2 永磁發電機模擬分析 13
2.2.1 發電機材料簡介 13
2.2.2 永久磁石材料 14
2.2.3 鐵心材料 16
2.3 永磁式發電機規格 16
2.3.1 發電機之尺寸 17
2.4 發電機之模擬結果 19
第三章 系統硬體轉換器架構 23
3.1功率因數修正之定義 23
3.1.1功率因數校正原理 26
3.1.2峰值電流控制法 29
3.1.3 磁滯電流控制法 30
3.1.4 平均電流控制法 31
3.1.5 功率因數校正晶片L4981原理 32
3.2單晶片微處理機介紹 40
3.2.1 高功能、改良式精簡指令集的中央控制器 42
3.2.2 數位信號處理(DSP)引擎功能 43
3.2.3 週邊功能 43
3.2.4 馬達控制波寬調變模組功能 44
3.2.5 定位編碼器QEI介面模組功能 47
3.2.6 類比功能 47
3.2.7 特殊的微控制器功能 48
3.2.8 CMOS技術 48
3.2.9 MPLAB介紹 48
3.3 推挽式轉換器 49
3.4返馳式轉換器 55
3.5單相換流器 59
3.5.1 單相換流器之操作 60
3.6 電感繞線設計[25] 62
3.7 鉛酸電池 66
3.7.1 酸電電池操作原理[26-27] 66
3.7.2 鉛酸電池特性[28-32] 67
3.8 硬體電路實驗結果分析與探討 70
3.8.1 功率因數校正電路 70
3.8.2 功率因數校正量測 72
3.9 推挽式轉換器 82
3.10 返馳式轉換器 86
3.11 全橋式單相換流器 89
第四章 海流發電系統之發電機轉軸輸入功率分析與探討 94
4.1.發電機轉軸輸入功率之量測 94
4.2 田口品質工程 96
4.2.1田口法之發電機轉軸輸入功率分析(案例一) 98
4.2.2 田口法之發電機效率分析(案例二) 105
4.2.3 模糊推論田口法(案例三) 107
4.3雙反應曲面法 112
4.3.1實驗設計組合表 113
4.3.2模型建構 114
4.3.3雙反應曲面法參數優化:平均值與變異數之最佳化 115
4.4結果分析 116
4.4.1雙反應曲面法之發電機轉軸輸入功率分析(案例四) 116
4.4.2 雙反應曲面法之發電機轉軸輸入功率分析(案例五) 125
4.4.3 雙反應曲面法之發電機轉軸輸入功率分析(案例六) 134
第五章 結論與未來展望 144
5.1 結論 144
5.2 未來展望 145
參考文獻 146
附錄一 詞彙中英對照(依照出現順序) 150
作者簡歷 153
[1]H. Oman, “Magnetic braking of the Earth's rotation,” in IEEE Aerospace and Electronic Systems Magazine, Vol. 4, Issue 4, April 1989, pp.3-10.
[2]J. Werner, M. Evans and T. Bethem, “Real-time narrative summaries for NOAA’s PORTS®,“ Proceedings of MTS/IEEE, Sept. 2005, pp.1-3.
[3]A. D. Trapp and M. Watchorn, “EB development of tidal stream energy,” in Proceedings MAREC 2001, p.169-173.
[4]A. T. Jones and A. Westwood, “Economic forecast for renewable ocean energy technologies,” presented at EnergyOcean 2004, Palm Beach, Florida, 2004.
[5]A. T. Jones and W. Rowley, “Global perspective: economic forecast for renewable ocean energy technologies,” MTS Journal, Winter 2002, vol. 36. no. 4, pp. 85-90.
[6]國立台灣海洋大學海洋教育網網頁http://sea.ntou.edu.tw/03maritime/maritime02_02.php, 07/14/2007.
[7]K. Harada, G. Zhao,“Controlled power interface between solar cells and AC Source,”IEEE Trans. On Power Electronics, Vol. 8, No. 4, Oct. 1993,pp. 654-662.
[8]http://www.marineturbines.com/home.htm (last assessed January 2007)....CH1
[9]K. Ouchi and T. Yamatogi, “A study on the entrainment with density current generator,” Oceans MTS Conference and Exhibition of IEEE, Sept. 11-14, 2000, pp.787-790.
[10]H. Polinder, M.E.C. Damen and F. Gardner, “Linear PM generator system for wave energy conversion in the AWS,” IEEE Trans. on Energy Conversion, Vol. 19, Issue 3, Sept. 2004, pp.583-589.
[11]G. D. Marques, “Stability study of the slip power recovery generator applied to the sea wave energy extraction,” 23rd Annual of IEEE Power Electronics Specialists Conference,Vol. 1, July 1992, pp.732-738.
[12]M. Kentaro, S. Toru and T. Shigeru, “Numerical evaluation on the effect of density current generator to oxygen-deficient water in Ariake Sea,” Asia Pacific Oceans, May 2007, pp.1-5.
[13]T. Omholt, “A wave activated electric generator,” IEEE on Oceans, Vol. 10, Sep. 1978, pp.585-589.
[14]Y. Masuda,T. Yamazaki,Y. Outa and M. McCormick, “Study of backward bent duct buoy,” IEEE on Oceans, Vol. 19, Sep. 1987, pp.384-389.
[15]J. C. McCall, “Advances in national data buoy center technology,” IEEE Conference Proceedings on 98’ Oceans, Vol. 1, Oct. 1998, pp.544-548.
[16]D. C. Hanselman, Brushless Parmanent-Magnet Motor Design, McGraw-Hill Book Co., New York, 1994.
[17]曾百由, ds-PIC 數位訊號控制器原理與應用,宏友圖書開發股份有限公司。
[18]User Guide 51284d, Microchip.
[19]梁適安譯,”高頻交換式電源供應器原理與設計”,二版,全華科技圖書,1995.
[20]梁適安,”切換式電源供給之理論與實務設計”,全華科技圖書,2004.
[21]R. Redl and B. P. Erisman, “Reducing distortion in peak current controlled boost power-factor correctors,” IEEE APEC, pp. 584-590, 1994.
[22]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysys of a hysteretic boost power factor correction circuit,” IEEE PESC, 1990, pp. 800-807.
[23]J. Sebastian, M. Jaureguizar, and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” IEEE International Conference on Industrial Electronics, Control and Instrumentation, Sept. 1994, vol. 3, pp. 1688-1693,.
[24]Datasheet of L4981, SGS-THOMSON, 1997.
[25]Ned Mohan,“Power electronics and drivers,”2003.
[26]D. Berndt, Maintenance-Free Batteries: Lead-Acid, Nickel/Cadmium, Nickel/Hydride-A Hand Book of Battery Technology, Research Studies Press LTD.,1993
[27]M. Dekker, Battery Technology Handbook, New York and Basel, 1989.
[28]M. Ehsani, Y. Gao, S. E. Gay, and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, CRC Press, 2004.
[29]I. Husain, Electric and Hybrid Vechickes Design Fundamentals, CMC Press, 2003.
[30]F. Lacressonniere, B. Cassoret, and J. F. Bruday,”Influence of A charging current with A sinusoidal perturbation on the performance of A lead-acid Battery,” IEE Proceedings of Electric Power Applications, September 2005, Vol. 152, No. 5, pp.1365-1370.
[31]S. Barsali and M. Ceraolo, “Dynamic Models of lead-acid batteries: Implementation Issues,” IEEE Teansactions on Energy Conversion, March 2002, Vol. 17, No. 1, pp.16-23.
[32]M. Ceraolo, “New dynamical models of lead-acid batteries,” IEEE yransactions on Power Systems, November 2000, Vol. 15, No. 4, pp. 1184-1190.
[33]葉怡成,實驗計劃法-製程與產品最佳化,五南,台北,2001。
[34]Barker, Quality Engineering by Design: Taguchi’s Philosophy, Quality Progress, T.B., 1986.
[35]H. R. Myers and C. Douglas, “Response surface methodology : process and product optimization using designed experiments,” Wiley, New York, 1995.
[36]K. Koyamada, K. Sakai and T. Itoh, “Parameter optimization technique using the response surface methodology,” Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004, pp.2909-2912.
[37]H. R. Myers, C. D. Montgometry, “Response surface methodology,” John Wiley & Sons. Inc, 1995.
[38]C. D. Montgomery, “Design and analysis of experiments 4th edition,” John Wiley & Sons Inc, 1996.
[39]M. Kuzuno, T. Nishio, K. Koyamada and T. Nishio, ”A thermal compact modeling method using response surface methodology with genetic algorithm,” PDPTA, CISST & IC-AI International Conferences, 2000, pp.627-634.
[40]M. Kuzuno, T. Nishio and K. Koyamada, ”Compact modeling for thermal simulation using response surface methodology,” International Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems With Industrial Applications,” PVP-vol. 424-2, 2001, pp.57-63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔