(3.238.96.184) 您好!臺灣時間:2021/05/15 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇育德
研究生(外文):Yuder Su
論文名稱:718鎳基超合金徑向鍛造成型分析與探討
論文名稱(外文):The forming analysis and discussion of radial forging for 718 Nickel-base superalloys.
指導教授:黃世疇
指導教授(外文):Shyh-Chour Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:徑向鍛造鎳基超合金
外文關鍵詞:DEFORM-3DBAR FORGERadialForging、Nickel-base superalloys
相關次數:
  • 被引用被引用:0
  • 點閱點閱:819
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文藉由有限元素軟體DEFORM-3D模擬718鎳基合金之鍛造相關參數,包含加熱製程、鍛造成型等,同時與徑向鍛造機所搭配之鍛造道次模擬軟體BAR FORGE比對差異性,並以四面徑向鍛造機實際鍛造成型,針對鍛造模擬與實際結果相關性進行探討,建立開發新材料製程之機制。
由蒐集的技術文件及利用高溫壓縮實驗而獲得718鎳基合金之流變應力、應變、應變率參數,輸入DEFORM-3D及BAR FORGE模擬與實際鍛造成型比對,由結果顯示:
1.以DEFORM-3D模擬加熱製程和均質化溫度製程,針對胚料均溫性探討,驗證所設計之溫度-時間曲線可以滿足10 ℃之溫度誤差。
2.交互比對三者在鍛造力量顯示之結果,BAR FORGE與DEFORM-3D 鍛造力量誤差值約為15.8%,實際鍛造力量與BAR FORGE鍛造力量誤差值約為13.8%,實際鍛造力量與DEFORM-3D鍛造力量誤差值約為2%,所以由結果判定模擬與實際鍛造是吻合的,但由T分配檢定其鍛造力量水準發現DEFORM-3D模擬結果較BAR FORGE所模擬之鍛造力量結果較為準確。
3.用鍛後棒材之晶粒度號數來衡量鍛造之等效應變程度,由金相圖結果可知,DEFORM-3D模擬所預測出之等效應變與金相圖呈現之組織是相符合的,且可由金相圖觀察晶粒號數M 端>TM端,表面>1/2 圓>心部。
This thesis analyses the simulations of forging parameters of 718 nickel base alloy by using software Deform-3D. The parameters include the process of heat regulation, the forge forming and so on. The simulations done by Deform-3D and the forging process software Bar Forge are compared. The results of experiments conducted by the four Hammer Radial Forging machine are also compared with the simulation results. Then a new process of material system regulation is developed.

After comparing the simulation results of Deform-3D and Bar Forge with the forging experiments, we have some results as following:

1.The results obtained by Deform-3D simulations of the process with heat regulation and the homogenization temperature system regulation show that the temperature – time curve can be satisfied within 10 ℃ temperature error.

2.On comparing Deform-3D’s simulation result with Bar Forge’s simulation result, the forging force difference come out is 15.8%; the forging force difference between Bar Forge’s simulation result and the experimental result is 13.8%; the forging force difference between Deform-3D’s simulation result and experimental result is 2%. From the t-sample test, the simulation result by Deform-3D is better than the result by Bar Forge.

3.From metallographic observation, we can see that the simulation equivalent strains by Deform-3D consist with the crystal grains organization in the metallographic. The crystal grains size of middle section is bigger than the size of top-middle section. In the cross section, the size of the crystal grain is this order: surface > 1/2 circle > center section.
中文摘要…………………………………………………………………………i
ABSTRACT……………………………………………………………………......................iii
誌謝………………………………………………….………………………….v
目錄…………………………………………………..……………………….vi
表目錄……………………………………………….…………………………..viii
圖目錄……………………………………………………………………………..ix
第一章 緒論……………………………………………………………………….1
1.1前言………………………………………………………………………….1
1.2研究目的與方向………………………………………………...………….2
第二章 文獻回顧…………………………………………...………......……….3
2.1 鎳基超合金概述………………………………………………..…………3
2.2 鎳基超合金之用途………………………………………………………..5
2.3 718鎳基超合金基本性質………………………….……………………..7
2.3.1 718鎳基超合金之物理特性......................................................7
2.3.2 718鎳基超合金之化學特性………………...................7
2.3.3 718鎳基超合金之晶格結構………………….…..………………...9
2.3.4 718 鎳基超合金之鑄錠特性……………………………....……..11
2.4 718鎳基超合金均質化特性…………………………………..…………12
2.5 718鎳基超合金製程技術…………………………………..……………16
第三章 研究步驟與方法……………………………..………………………..22
3.1 鍛造機設備與鍛造流程…………………………………………………23
3.1.1徑向四面鍛造機…………………………………………………....23
3.1.2徑向四面鍛造機塑性成型原理…………………….……………..25
3.1.3鍛造流程……………………………………...……………………..27
3.2鍛造壓縮試驗……………………………………………………..………29
3.2.1壓縮試驗方法…………………………………………..…………..29
3.2.2壓縮試驗結果………………………………………………..……..37
3.3鍛造模擬規劃………………………………………………………..……44
3.3.1 DEFORM-3D 模擬……………………….………………………..44
3.3.2 BAR FORGE 模擬………………………………………….……...48
第四章 結果與討論………………………………..…………………………...50
4.1模擬結果輸出與分析…………………………………………….………50
4.1.1均質化製程模擬………………………………….…………………50
4.1.2 加熱製程模擬……………………………………………..………..53
4.1.3 鍛造製程模擬…………………………………………..…………..55
4.2鍛造實驗…………………………………………..………………………61
4.3模擬與鍛造結果驗證……………………………………..………………62
4.3.1模擬與實際鍛造力量比較…………………………….……………62
4.3.2模擬等效應變與鍛造品質之比較………………………………....66
4.3.3模擬與實際溫度比較………………………………..............70
第五章 結論與未來展望..……………………...……………………………71
5.1結論………………………………………………………………….……..71
5.2未來展望…………………………………………………………………..72
參考文獻………………………………………………………………………….73
附錄一 DEFORM-3D模擬718鎳基超合金輸入步驟……………………….76
附錄二 BARFORGE模擬718鎳基超合金輸入步驟………………………..79
附錄三 BARFORGE執行程式………………..……………………………….81
個人資料………………………………………………………………………….83
[1] 曾奕愷,2008,Inconel 718 高溫時效相變態行為之研究,國立台灣大學,碩士
論文。
[2] J. R. Davis, 2000, Nickel, Cobalt, and their Alloys, ASM
International, Ohio America.
[3] M. J. Donachie, Jr, 1984, Superalloys Source Book, ASM
International, Ohio America.
[4] R. E. Schafrik, D. D. Ward, J. R. Groh, 2001, “Application of
Alloy 718 in GE Aircraft Engines: Past, Present and Next Five
Years”, Superalloys 718, 625, 706 and Various Derivatives, ed. by
E. A. Loria, TMS., pp. 1-11.
[5] D. F. Paulonis and J. J. Schirra, 2001, “Alloy 718 at Pratt &
Phitney-Historical Perspective and Future Challenges, Superalloys
718, 625, 706 and Various Derivatives, ed. by E. A. Loria, TMS.,
pp. 13-23.
[6] J. M. Moyer, L. A. Jackman, C. B. Adasczik, R. M. Davis, and R.
Forbes-Jones, 1994, “Advances in Triple Melting Superalloys 718,
706, and 720”, Superalloys 718, 625, 706 and Various Derivatives,
ed. by E. A. Loria, TMS., pp.39-48.
[7] R. Schwant, S. Thamboo, L. Yang, M. Morra, 2005, “Extending the
Size of Alloy 718 Rotating Components”, Superalloys 718, 625, 706
and Derivatives, ed. by E. A. Loria, TMS., pp.15-24.
[8] C. Malara and J. Radavich, 2005, “Alloy 718 Large Ingots
Studies”, Superalloys 718, 625, 706 and Derivatives, ed. by E. A.
Loria, TMS., pp.25-33.
[9] 謝勞夫(Sabroff, A. M.)等撰,1971,鍛造用材料及鍛造方法,徐氏基金會。
[10] D. D. Krueger, 1989, “The Developmfnt of Direct Age 718 for Gas
Turbine Engine Disk Applications”, Superalloys 718 Metallurgy and
Applications, ed. by E. A. Loria, TMS, pp.279-296.
[11] L. A. Jackman, G. J. Smith, A. W. Dix and M. L. Lasonde,
1991, “Rotary Forge Processing of Direct Aged Inconel 718 for
Aircraft Engine Shafts”, Superalloys 718, 625 and Various
Derivatives, ed. by E. A. Loria, TMS., pp.125-132.
[12] L. Renhof, C. Krempaszky, E. Werner and M. Stockinger,
2005, “Analysis of Microstructural Properties of IN 718 After
High Speed Forging”, Superalloys 718, 625, 706 and Derivatives,
ed. by E. A. Loria, TMS., pp.261-270.
[13] J. L. Russell, M. L. Lasonde and L. A. Jackman,
2005, “Microstructure Development and Thermal Response of Delta
Processed Billet and Bar for Alloy 718”, Superalloys 718, 625,
706 and Derivatives, ed. by E. A. Loria, TMS., pp.363-372.
[14] J. M. Poole, K. R. Stultz and J. M. Manning, 1989, “The Effect
of Ingot Homogenization Practice on the Properties of Wrought
Alloy 718 and Structure”, Superalloys 718- Metallurgy and
Applications, ed. by E. A. Loria, TMS., pp.219-228.
[15] X. Liang , R. Zhang, Y. Yang and Y. Han, 1994, “An
Investigation of the Homogenization and Deformation of Alloy 718
Ingots”, Superalloys 718, 625, 706 and Various Derivatives, ed.
by E. A. Loria, TMS., pp.947-956.
[16] W. R. Sun, H. R. Guan, M. Wang, Z. G. Wang, L. F. Huang and Z.
Q. Hu, 2005, “Influence of Phosophrus on Deformation Mechanism
and Mechanical Properties of IN718 Alloy”, Superalloys 718, 625,
706 and Derivatives, ed. by E. A. Loria, TMS., pp.399-407.
[17] Wen-Ge Wang, Wen Gao, 2005,“New Technology & Characteristics of
Deformation Process for Hydraulic Radial Forging Machine”,
Baosteel Co. Ltd., pp.1-22.
[18] M. C. Mataya, E. R. Nilsson, and G. Krauss, 1994, ”Comparison
of single and multiple pass compression tests used to simulate
microstructural evolution during hot working of alloys 718 and
304L”, Superalloys 718, 625, 706 and Various Derivatives, ed. by
E. A. Loria, TMS., pp331-343.
[19] 材料手冊:Ⅱ非鐵金屬材料,中國材料科學學會,1983。
[20] A. A. Tseng, S. X. Tong, T. C. Chen, J. Hashemi,
1994, “Thermomachanical simulation of a radial forging process”,
Materials & Design , Number 2, Vol. 15.
[21] Laurence A. Jackman, MS. Ramesh, Robin Forbes
Jones, “Development of a finite element model for radial forging
of superallys”, ed. by S.D. Antolovich, TMS, pp109-112.
[22] D. Zhao, C. Cheng, R. Anbajagane, H. Dong and F.S. Suarez,
1997, “Three-Dimensional Computer Simulation of Alloy 718 Ingot
Breakdown by Cogging”, ed. by E. A. Loria, TMS., pp163-172.
[23] Motoi Yamguchi, 2004, “Grain size prediction of alloy 718
billet forged by radial forging machine using numerical and
physical simulation”, Metallurgical Research Laboratory, Hitachi
Metals Ltd.
[24] 李顯榮,李驊登,1998,”Process simulation and analysis
technologies for four-hammer radial forging of Ti-6Al-4V Alloy
(2)”,國立成功大學機械工程研究所/榮剛公司委託研究計劃書,榮剛材料科技股
份有限公司,台南 。
[25] Rupert Wiser, 2003, BarForge – Description SWD/Mik, GFM GmbH,
Austria.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top