(3.210.184.142) 您好!臺灣時間:2021/05/09 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇毓仁
研究生(外文):Yu-Jen Su
論文名稱:場發射顯示器螢光材料之製備與性質研究
論文名稱(外文):A study on the preparation and characterization analysis of Phosphors for field emission display
指導教授:江家慶江家慶引用關係
指導教授(外文):Chia-Chin Chiang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:131
中文關鍵詞:場發射顯示器螢光粉超音波溶膠凝膠法高溫固態燒結法電泳沉積法主體晶格活化劑離子。
外文關鍵詞:field emission display、phosphor (FED)、 sonicator、sol-gel method、high temperature solid state method、Electrophoretic de
相關次數:
  • 被引用被引用:1
  • 點閱點閱:675
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主旨在將超音波作用引入氧化物螢光粉體之製作過程中。經實驗發現,此一作用明顯的造成活化劑離子均勻且整體性的分散至主體晶格中,而使螢光發光強度提升。另外亦使在較低的煆燒溫度下可得發光強度高的氧化物螢光粉體。
在研究過程中,經參考以往文獻之製程分別以高溫固態燒結法(high temperature solid state method)及溶膠凝膠法(sol-gel method )製備Y2O3:Eu3+螢光粉體。在實驗結果中發現,Y2O3摻雜Eu3+於800℃煆燒3hr之最佳摻雜濃度為10 mole%; 但溶膠凝膠法易受殘留的官能基而影響發光強度。
因此本研究導入超音波反應進行缺陷改善,經實驗結果得到超音波功率21W反應15分鐘,可有效改善殘留的官能基達到發光強度的提升。而溶膠凝膠法進行螯合(chelation)時若配合超音波反應,可使摻雜離子Eu3+均勻分散於主體晶格,更可增加Eu3+摻雜的數量,提高Eu3+離子間能量轉移的機率,進而達到發光強度的提升。
本研究以完成場發射顯示器為最終成果,利用電泳沉積法於電壓60V,將螢光粉體沈積在1 cm2的ITO玻璃,其厚度約為12 μm。最後將製備完成的陽極板與陰極板結合置於真空腔體中進行發光測試,經測試結果可得到波長611nm的高效率紅光顯示系統。
The main stream of this study is to introduce the effect of ultrasonic dispersion into the manufacture process of oxide phosphor Y2O3:Eu3+. According to the evidence, the intensity of illuminance is obviously heaved because of the well and uniform dispersion of actiavtor partial in host. Beside, that made at the condition of lower temperature sintering could provide high intensity ability of illuminance of oxide phosphor.
To refer to the literatures, (a) high temperature solid state method and (b) sol-gel method were employed to figure out the optimum parameters for low sintering temperature and high intensity phosphor’s manufacture process. We find out that it will get excellent intensity when Eu3+ 10M doping in Y2O3 with 800℃, 3 hrs sintering in process (a). And, the remainder of chemical radical makes a critical damage to the ability of illuminance in process (b).
For this reason, the effect of ultrasonic dispersion is employed to improve the distribution of activator and the defect concentration in host during the chelation reaction time. The results show that no matter in process (a) and (b) after 21 W and 15 min of ultrasonic dispersion, the ability of illuminance could get an obvious promotion. After several checking process (SEM, X-ray, FTIR and so on), all evidence refer to the critical help of ultrasonic dispersion. Because it make (1) the seldom chemical radical to remain, (2) the doper (Eu3+) could get well and uniform disperse and more amount in host structure (to heave the probability of energy transferring of Eu3+) during the chelation reaction time.
Preliminary FED test also be conducted at the end of this study. The oxide phosphor is coated on 1 cm2 ITO glass as an anode by 60 V of applied voltage of Electrophoretic deposition methods and with 12 μm thickness. It works well in color of red with 613 nm wave length.
目 錄

中文摘要 Ι
Abstract II
致謝 III
目錄 IV
表目錄 IV
圖目錄 IV


第一章緒論..........................................................1
1.1 前言..........................................................1
1.2 研究動機.................................................... 2
1.3文獻回顧..........................................................4

第二章 理論基礎....................................................9
2.1光之性質及定義................................................ 9
2.1-1光之性質................................................9
2.1-2 色彩定義................................................ 9
2.1-3色溫 (Color Temperature)...................................9
2.1-4演色性 (Color Rendering Index) ..........................10
2.1-5 CIE色度座標 (CIE Chromaticity Diagram)..................10
2.2 發光機制與原理...................................................11
2.2-1 熱輻射與發光...............................................11
2.2-2 組態座標(configuration coordination....................12
2.2-3 螢光(fluorescence)與磷光(phosphorescence) ...............13
2.2-4 激發源種類與應用....................................... 13
2.2-5 斯托克位移(Stokes shift)............................. 17
2.3 螢光材料種類及簡介............................................ 17
2.3-1 螢光材料種類............................................. 18
2.3-2 螢光材料的組成...........................................19
2.3-3 主體晶格之選擇...........................................19
2.3-4 活化劑之選擇.............................................20
2.3-5 抑制劑之選擇.............................................20
2.3-3氧化釔............................................... 20
2.3-4稀土金屬離子的發光特性.............................. 21
2.4 影響發光的要素............................................. 22
2.4-1毒劑現象(poisoning) ....................................22
2.3-2 濃度淬滅(concentration quenching)效應...................22
2.3-3 熱消減現象(thermal quenching) ........................22
2.3-4 其他影響因素............................................23
2-5 螢光體製備.......................................................24
2-5-1 固相反應法(solid state method) ...................... 24
2-5-2 溶膠凝膠法(sol-gel method)..............................25
2-5-3 水熱法(Hydrothermal method)........................... 27
2-5-4 共沈澱法(Co-precipitation method) .....................27
2-5-4 超音波法(Ultrasonic Wave method).......................28

第三章 實驗方法與步驟.................................................49
3-1 化學藥品......................................................49
3-2 實驗步驟....................................................49
3-2-1陽極螢光粉之製備.........................................50
3-2-1.1 高溫固態燒結法..................................50
3-2-1.2 溶膠凝膠法............................................. 50
3-2-1.3 超音波技術的導入.............................................51
3-2-2陽極螢光粉之鍍膜................................................53
3-2-3場發射顯示器系統組裝.............................................54
3.3結構分析儀器原理.............................................54
3.3-1 場發射掃瞄式電子顯微鏡(FE-SEM) ............................. 54
3.3-2 X光能量散佈分析儀(EDS).................................55
3.3-3 X光粉末繞射儀(XRD) ....................................56
3.3-4熱重分析儀(TGA) ...........................................57
3.4 光性分析儀器原理..............................................57
3.4-1傅立葉轉換紅外線光譜儀(FTIR) .............................57
3.4-2陰極射線激發光譜儀 (CL) ..................................58

第四章 實驗結果與討論................................................72
4.1 高溫固態燒結法與溶膠凝膠法製備Y2O3:Eu3+螢光粉體..................72
4.1-1 TGA熱分析...............................................72
4.1-2 傅立葉轉換紅外線光譜(FT-IR)分析...........................73
4.1-3 SEM表面型態之分析......................................74
4.1-4 X光繞射(XRD)分析......................................74
4.1-4.1 Eu摻雜濃度對結構的影響.........................74
4-1-4.2 燒結溫度對結構的影響............................75
4.1-5 陰極射線發光之特性(cathodoluminescence,CL)...............75
4.1-5.1 Eu3+摻雜濃度對發光強度的影響.......................75
4.1-5.1 燒結溫度對發光強度的影響..........................77
4.1-6 結論.....................................................77
4.2結合超音波反應改善溶膠凝膠法製備Y2O3:Eu3+螢光粉體..................78
4.2-1 超音波改善表面官能基......................................78
4.2-1.1傅立葉轉換紅外線光譜(FT-IR)分析...................78
4.2-1.2 SEM表面型態之分析.............................. 78
4.2-1.3 X光繞射(XRD)分析...............................79
4.2-1.4陰極射線發光之特性(cathodoluminescence,CL).....79
4.2-2 超音波加速金屬離子反應與分散..............................80
4.2-1.2 SEM表面型態之分析……………………………………..…80
4.2-1.3 X光繞射(XRD)分析……………………………………..….80
4.2-1.4陰極射線發光之特性(cathodoluminescence,CL)……81
4.2-3 超音波增加金屬離子螯合反應……………………………………..81
4.2-3.1 SEM表面型態之分析……………………………………...…82
4.2-3.2 EDX 成份分析………………………………………………82
4.2-3.3 X光繞射(XRD)分析………………………………………..82
4.2-3.4陰極射線發光之特性(cathodoluminescence,CL)……83
4.3陽極板鍍膜………………………………………………………………… 84
4.3-1 輸出電壓與沉積時間對鍍膜厚度的影響…………………… 84
4.3-2 輸出電壓對沉積行為的影響………………………………… 84
4.3-3 輸出電壓對沉積表面型態之分析……………………………84
4.4場發射顯示器系統組裝與測試......................................85

第五章 總結…………………………. ………………………………………...... 123
5.1 結論…………………………. …………………………. …………………123
5.2未來展望…………………………………………………………………….124

參考文獻………………………………………………………………………….. 125

表目錄

表1-1各類顯示器之特性比較..............................................................7
表2-1演色性指數表………………………………………………………………29
表2-2可作為發光體晶格中之陽離子的種類與價數……………………………. 29
表2-3可作為主體晶格且具光學活性的陰離子團種類與價數………………… 30
表2-4 可作為主體晶格且不具光學活性的陰離子團種類與價數……………... 30
表2-5可作為活化劑的陽離子種類與價數……………………………. ……… 31
表2-6易成為抑制的劑陽離子種類與價數……………………………………… 31
表2-7粉體材料之製備法…………………………….…………………………... 32
表3-1紅外線光譜區的劃分…………………………….………………………. 60
表4-1溶膠凝膠法與導入超音波反應之應變比較………………………………87
表4-2溶膠凝膠法與導入超音波反應之EDS分析…………………………….87

圖目錄


圖1-1場發射顯示器基本結構圖....................................... 8
圖2-1電磁波波長對應光子之能量表示圖................................33
圖2-2色溫對照圖.....................................................33
圖2-3CIE顏色計量座標圖...............................................34
圖2-4熱輻射強度與溫度關係圖.....................................35
圖2-5利用組態座標來表示發光現象之過程示意圖.......................35
圖2-6物質吸光與放光過程電子轉移路徑....................................36
圖2-7陰極射線管結構圖........................................37
圖2-8場發射顯示器基本結構圖.........................................37
圖2-9電子場發射理論..........................................38
圖2-10電漿顯示器面板結構剖面圖................................38
圖2-11電激發光元件結構.............................................39
圖2-12電機發光二極體發光機制能帶圖...................................40
圖2-13斯托克斯偏移....................................40
圖2-14固態材料受能量激發之轉換方式...............................41
圖2-15(a)活化劑於主體晶格能量轉移,(b)增感劑與活化劑於主體晶格能量轉移,其中H為主體晶格、A為活化劑離子、S為增感劑...................... 42
圖2-16Y2O3 結構金屬離子之S6 與C2 對稱環境示意圖..............43
圖2-17三價稀土離子的能態圖.....................................44
圖2-18發光體效率之毒劑濃度效應........................................45
圖2-19高活化劑濃度時所造成之濃度消光成因示意圖其中H 是主體, A 是活劑,P 是毒化物……………………45
圖2-20發光體效率之活化者濃度效應圖2-21發光體效率之溫度效應..............46
圖2-22利用結構座標表示熱消減現象...........................47
圖2-23高溫固態反應原理示意圖.......................................47
圖2-24溶膠凝膠原理示意圖..........................................48
圖2- 25超音波之空蝕現象(Cavitation)產生示意圖......................48
圖3- 1高溫固態燒結法製備Y2O3:Eu3+螢光粉體之流程.......................61
圖3- 2溶膠凝膠法製備Y2O3:Eu3+螢光粉體之流程........................62
圖3- 3導入超音波去除Y2O3:Eu3+螢光粉體表面官能基之流程..........63
圖3- 4導入超音波反應加速金屬離子反應與分散之流程..................64
圖3- 5導入超音波反應增加金屬離子的螯合作用之流程......................65
圖3- 6電泳鍍膜的簡易設備裝置圖,其中(a)表電泳鍍膜前,(b)表電泳鍍膜後...66
圖3- 7自製簡易型場發射顯示器系統..................................67
圖3- 8掃瞄式電子顯微鏡示意圖......................................68
圖3- 9EDS裝置示意圖............................69
圖3- 10特性X光產生示意圖.....................................70
圖3- 11布拉格定律與粉末繞射配置幾何示意圖...........................70
圖3- 12熱重量法的三種模式.......................................71
圖3- 13FT-IR光譜儀之光學安排示意圖.................................71
圖3- 14陰極射線管的裝置圖..........................................72
圖3- 15 CL光譜儀之光學安排示意圖...................................72
圖4- 1 高溫固態燒結法之熱重(TGA)分析圖........................... 88
圖4- 2溶膠凝膠法之熱重(TGA)分析圖................................ 88
圖4- 3 高溫固態燒結法製備Y2O3摻雜Eu3+10mole%分別在(a)300、(b)600、(c)800、(d)1000℃燒結3小時之FT-IR............................ 89
圖4- 4溶膠凝膠法製備Y2O3摻雜Eu3+10mole%分別在(a)300、(b)600、(c)800、(d)1000℃燒結3小時之FT-IR............................... 89
圖4- 5高溫固態燒結法製備Y2O3摻雜Eu3+10mole%分別在(a)600、(b)800、(c)1000燒結3小時之SEM............................................90
圖4- 6溶膠凝膠法製備Y2O3摻雜Eu3+10mole%分別在(a)600、(b)800、(c)1000燒結3小時之SEM................................................91
圖4- 7高溫固態燒結法製備Y2O3摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%螢光粉體,於燒結溫度800℃之XRD........ 92
圖4- 8 氧化釔繞射分析結果對照表(JCPDS CARD).................. 92
圖4- 9溶膠凝膠法製備Y2O3摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%螢光粉體,於燒結溫度800℃之XRD....................93
圖4- 10 高溫固態燒結法與溶膠凝膠法製備Y2O3摻雜Eu3+不同濃度於燒結溫度800℃之XRD強度比較圖...................................................93
圖4- 11 高溫固態燒結法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,分別於(a)600、(b)800、(c)1000℃燒結3小時之XRD.............. 94
圖4- 12溶膠凝膠法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,分別於(a)600、(b)800、(c)1000℃燒結3小時之XRD................. 94
圖4- 13高溫固態燒結法與溶膠凝膠法製備Y2O3摻雜Eu3+濃度10mole%於600、800、1000℃燒結3小時之XRD強度比較圖...................... 95
圖4- 14高溫固態燒結法製備Y2O3摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%螢光粉體,於燒結溫度800℃之CL激發光譜...... 95
圖4- 15 溶膠凝膠法製備Y2O3摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%螢光粉體,於燒結溫度800℃之CL激發光譜.... 96
圖4- 16高溫固態燒結法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,分別於(a)600、(b)800、(c)1000℃燒結3小時之CL發射光譜..................... 96
圖4- 17 溶膠凝膠法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,分別於(a)600、(b)800、(c)1000℃燒結3小時之CL發射光譜............ 97
圖4- 18高溫固態燒結法與溶膠凝膠法製備Y2O3摻雜Eu3+濃度10mole%於600、800、1000℃燒結3小時之CL發光強度比較圖.............................. 97
圖4- 19 溶膠凝膠法製備Y2O3掺雜Eu3+濃度10mole%之螢光粉體於800℃燒結過後,進行超音波反應(a)原始、(b)15W,5分、(c) 15W,15分、(d) 15W,30分、(e) 21W,5分、(f) 21W,15分、(g) 21W,30分、(h) 30W,5分、(i) 30W,15分、(j) 30W,30分之FTIR........................................................... 98
圖4- 20溶膠凝膠法製備Y2O3掺雜Eu3+濃度10mole%之螢光粉體於800℃燒結過後,進行超音波反應(a)原始、(b)15W,5分、(c) 15W,15分、(d) 15W,30分、(e) 21W,5分、(f) 21W,15分、(g) 21W,30分、(h) 30W,5分、(i) 30W,15分、(j) 30W,30分,再以600℃熱處理之FTIR.................................................98
圖4- 21 溶膠凝膠法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,於800℃燒結後,進行超音波功率15W於(a)5分、(b)15分、(c)30分反應之SEM.......... 99
圖4- 22溶膠凝膠法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,於800燒結後,進行超音波功率21W於(a)5分、(b)15分、(c)30分反應之SEM......... 100
圖4- 23溶膠凝膠法製備Y2O3摻雜10mole%Eu3+離子之螢光粉體,於800燒結後,進行超音波功率30W於(a)5分、(b)15分、(c)30分反應之SEM............ 101
圖4- 24溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波功率15W於(a)原始、(b)5分、(c)15分、(d)30分反應之XRD.. 102
圖4- 25溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波功率21W於(a)原始、(b)5分、(c)15分、(d)30分反應之XRD.. 102
圖4- 26溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波功率30W於(a)原始、(b)5分、(c)15分、(d)30分反應之XRD. 103
圖4- 27溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波不同功率及時間之XRD強度眾合比較圖............................. 103
圖4- 28溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波功率15W於(a)原始、(b)5分、(c)15分、(d)30分反應之CL激發光譜............ 104
圖4- 29溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波功率21W於(a)原始、(b)5分、(c)15分、(d)30分反應之CL激發光譜......... 104
圖4- 30溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波功率30W於(a)原始、(b)5分、(c)15分、(d)30分反應之CL激發光譜............ 105
圖4- 31溶膠凝膠法製備Y2O3:Eu3+之螢光粉體,於800燒結後,進行超音波不同功率及時間之CL強度眾合比較圖................................ 105
圖4- 32超音波導入溶膠凝膠法製備Y2O3 :Eu3+濃度10 mole%,於燒結溫度(a)600℃、(b)800℃、(c)1000℃之SEM................... 106
圖4- 33超音波導入溶膠凝膠法製備Y2O3 :Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%螢光粉體,於燒結溫度800℃之XRD 107
圖4- 34 溶膠凝膠法製備與導入超音波製備Y2O3摻雜Eu3+不同濃度,於燒結溫度800℃之XRD強度比較圖....................................107
圖4- 35溶膠凝膠法製備與導入超音波製備Y2O3:Eu3+濃度10 mole%,於不同燒結溫度之XRD強度比較圖.......................................108
圖4- 36 超音波導入溶膠凝膠法製備Y2O3 摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%,於燒結溫度800℃之CL激發光譜… 108
圖4- 37溶膠凝膠法製備與導入超音波製備Y2O3摻雜Eu3+不同濃度,於燒結溫度800℃之CL強度比較圖...................................................109
圖4- 38為超音波導入溶膠凝膠法製備Y2O3掺雜10mole%Eu3+離子之螢光粉體,於(a)600、(b)800、(c)1000℃燒結後之CL發射光譜................... 109
圖4- 39溶膠凝膠法製備與導入超音波製備Y2O3:Eu3+濃度10 mole%,於不同燒結溫度之CL強度比較圖............................... 110
圖4- 40溶膠凝膠法導入超音波反應於功率15W、時間(a)5、(b)15、(c)30分鐘,製備Y2O3 摻雜Eu3+濃度10 mole%之螢光粉體SEM分析............ 111
圖4- 41溶膠凝膠法導入超音波反應於功率30W、時間(a)5、(b)15、(c)30分鐘,製備Y2O3 摻雜Eu3+濃度10 mole%之螢光粉體SEM分析........... 112
圖4- 42溶膠凝膠法導入超音波反應於功率45W、時間(a)5、(b)15、(c)30分鐘,製備Y2O3 摻雜Eu3+濃度10 mole%之螢光粉體SEM分析............ 113
圖4- 43 溶膠凝膠法導入超音波反應於功率15W、時間(a)原始、(b)5、(c)15、(d)30分鐘,製備Y2O3 摻雜Eu3+濃度10 mole%之螢光粉體XRD分析..... 114
圖4- 44 溶膠凝膠法導入超音波反應於功率30W、時間(a)原始、(b)5、(c)15、(d)30分鐘,製備Y2O3 摻雜Eu3+濃度10 mole%之螢光粉體XRD分析....... 114
圖4- 45溶膠凝膠法導入超音波反應於功率45W、時間(a)原始、(b)5、(c)15、(d)30分鐘,製備Y2O3 摻雜Eu3+濃度10 mole%之螢光粉體XRD分析..... 115
圖4- 46溶膠凝膠法導入超音波反應於不同功率及時間,製備Y2O3 摻雜Eu3+濃度10 mole%螢光粉體之XRD眾合比較圖.................................... 115
圖4- 47溶膠凝膠法導入超音波反應於功率15W、30分鐘,製備Y2O3摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%,於燒結溫度800℃之XRD分析................................................... 116
圖4- 48溶膠凝膠法製備與導入超音波製備Y2O3摻雜Eu3+不同濃度,於燒結溫度800℃之XRD強度比較圖................................................. 116
圖4- 49溶膠凝膠法製備與導入超音波製備Y2O3:Eu3+濃度10 mole%,於不同燒結溫度之XRD強度比較圖.................................................. 117
圖4- 50溶膠凝膠法導入超音波反應於功率15W、時間(a)原始、(b)5、(c)15、(d)30分鐘,製備Y2O3摻雜Eu3+濃度10 mole%之螢光粉體CL激發光譜............................................................. 117
圖4- 51溶膠凝膠法導入超音波反應於功率30W、時間(a)原始、(b)5、(c)15、(d)30分鐘,製備Y2O3摻雜Eu3+濃度10 mole%之螢光粉體CL激發光譜........................... 118
圖4- 52溶膠凝膠法導入超音波反應於功率45W、時間(a)原始、(b)5、(c)15、(d)30分鐘,製備Y2O3摻雜Eu3+濃度10 mole%之螢光粉體CL激發光譜......................................................... 118
圖4- 53溶膠凝膠法導入超音波反應於功率15W、30分鐘,製備Y2O3摻雜Eu3+濃度(a) 5mole%、(b) 10 mole%、(c) 15 mole%、(d) 20 mole%,於燒結溫度800℃之CL激發光譜.........................................................119
圖4- 54溶膠凝膠法製備與導入超音波製備Y2O3摻雜Eu3+不同濃度,於燒結溫度800℃之CL激發光譜................................................119
圖4- 55溶膠凝膠法製備與導入超音波製備Y2O3:Eu3+濃度10 mole%,於不同燒結溫度之CL激發光譜......................................................120
圖4- 56Y 2O3 摻雜Eu3+濃度10 mole%分別於(30、60、90、120V)的電壓下進行時間(2、4、6、8、10、14、18分鐘)電泳鍍膜之厚度比較。……………120
圖4- 57Y 2O3 摻雜Eu3+濃度10 mole%分別於(30、60、90、120V)的電壓下進行時間(2、4、6、8、10、14、18分鐘)電泳鍍膜之電阻值比較。……………121
圖4- 58Y 2O3 摻雜Eu3+濃度10 mole%分別於(a)30V、(b)60V、(c)90V、(d)120V的電壓下進行14分鐘電泳鍍膜之表面形貌分析。…………… 121
圖4- 59場發射顯示系統於電壓(a)0V、(b)100V、(c)150V、(d)200V、(e)250V、(f)300V、(g)350V、(h)400V之發光測試圖。……………122
[1]楊素華、藍慶忠,2004,"奈米碳管場發射顯示器",382,科學發展,pp.68-71
[2]Y.-S. Fran and T.-Y. Tseng,1999,"Preparation of aluminum film on phosphor screen for field emission display",61,Materials Chemistry and Physics,pp.166-168
[3]M. K. Patra, K. Manzoor, M. Manoth, S. R. Vadera, and N. Kumar,2008,"Studies of luminescence properties of ZnO and ZnO:Zn nanorods prepared by solution growth technique",128,Journal of Luminescence,pp.267-272
[4]H. Xiaoshan, H. Xiaowei, H. Yunsheng, and Z. Weidong,2007,"Research on Y2O3:Eu Phosphor Coated with In2O3",25,Journal of Rare Earths,pp.11-14
[5]W.-C. Chien,2006,"Synthesis of Y2O3:Eu phosphors by bicontinuous cubic phase process",290,Journal of Crystal Growth,pp.554-559
[6]S. Iijima and T. Ichihashi,1993,"Single-shell carbon nanotubes of 1-nm diameter",363,Nature,pp.603-605
[7]S. H. Lee, C. H. Lin, J. M. Chiou, and C. T. Kuo,2006,"Effects of post treatment on the field emission properties of CNTs grown by ECR-CVD",15,Diamond and Related Materials,pp.854-858
[8]Z. Zhang, Z. Sun, and Y. Chen,2007,"Improve the field emission uniformity of carbon nanotubes treated by ball-milling process",253,Applied Surface Science,pp.3292-3297
[9]V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine,2000,"Designed, highly-efficient FED phosphors and screens",87-89,Journal of Luminescence,pp.1277-1279
[10]V. B. Taxak, S. P. Khatkar, S.-D. Han, R. Kumar, and M. Kumar,2008,"Tartaric acid-assisted sol-gel synthesis of Y2O3:Eu3+ nanoparticles",In Press, Corrected Proof,Journal of Alloys and Compounds,pp.
[11]M. K. Chong, K. Pita, and C. H. Kam,2005,"Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol-gel deposition and rapid thermal annealing",66,Journal of Physics and Chemistry of Solids,pp.213-217
[12]S.-S. Yi, J. S. Bae, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, Y. S. Kim, and J. H. Kim,2006,"Enhanced luminescence of Gd2O3:Eu3+ buffer-layered Y2O3:Eu3+ thin films",127,Materials Science and Engineering: B,pp.159-163
[13]J. S. Bae, J. H. Jeong, K. S. Shim, B. K. Moon, S.-s. Yi, J. H. Kim, Y. S. Kim, and J. S. Lee,2006,"Crystallinity and morphology dependent luminescence of Li-doped Y2-xGdxO3:Eu3+ thin film phosphors",252,Applied Surface Science,pp.4564-4568
[14]J.-H. Park, N. G. Back, M.-G. Kwak, B.-E. Jun, B.-C. Choi, B.-K. Moon, J.-H. Jeong, S.-S. Yi, and J.-B. Kim,2007,"Synthesis and properties of luminescent Y2O3:Tb3+(5, 8, 12t.%) nanocrystals",27,Materials Science and Engineering: C,pp.998-1001
[15]J. M. Sung, S. E. Lin, and W. C. J. Wei,2007,"Synthesis and reaction kinetics for monodispersive Y2O3:Tb3+ spherical phosphor particles",27,Journal of the European Ceramic Society,pp.2605-2611
[16]L. Rabisch, S. B, and H. Scheife,2006,"Eu-doped (Lu/Sc)2O3 thin films grown by thermal evaporation",28,Optical Materials,pp.665-670
[17]L. Zhou and B. Yan,2006,"In situ synthesis and optical properties of strong red emitting nanomaterial: YxGd2-xO3: Eu3+ by composing different hybrid polymeric precursors",32,Ceramics International,pp.207-211
[18]C. Zhu, Y. Yang, G. Chen, S. Baccaro, A. Cecilia, and M. Falconieri,2007,"Photoluminescence and gamma-ray irradiation of SrAl2O4:Eu2+and Y2O3:Eu3+ phosphors",68,Journal of Physics and Chemistry of Solids,pp.1721-1724
[19]P. Zhou, X. Yu, L. Yang, S. Yang, and W. Gao,2007,"Synthesis of Y2Si2O7:Eu nanocrystal and its optical properties",124,Journal of Luminescence,pp.241-244
[20]Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang,2002,"Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties",20,Optical Materials,pp.13-20
[21]T. Takeda, D. Koshiba, and S. Kikkawa,2006,"Gel combustion synthesis of fine crystalline (Y0.95Eu0.05)2O3 phosphor in presence of lithium flux",408-412,Journal of Alloys and Compounds,pp.879-882
[22]S. S. Azim, C. Solaiyan, and G. Venkatachari,2008,"Development of coating for temperature sensing",62,Progress in Organic Coatings,pp.28-31
[23]H. Zhang, L. Mengkai, Z. Xiu, S. Wang, G. Zhou, Y. Zhou, S. Wang, Z. Qiu, and A. Zhang,2007,"Synthesis and photoluminescence properties of a new red emitting phosphor: Ca3(VO4)2:Eu3+; Mn2+",42,Materials Research Bulletin,pp.1145-1152
[24]D. Sun, H. Zhang, J. Zhang, G. Zheng, J. Yu, and S. Gao,2007,"Synthesis, structure and photochromic properties of a novel 1,6-hexanediamine trimolybdate supramolecular compound",180,Journal of Solid State Chemistry,pp.393-399
[25]O. A. Graeve and J. O. Corral,2006,"Preparation and characterization of rare-earth-doped Y2O3 luminescent ceramics by the use of reverse micelles",29,Optical Materials,pp.24-30
[26]G. Yao, L. Su, X. Xu, and J. Xu,2007,"Eu:Y2O3 nano-phosphor prepared by novel energy-saving solution combustion method",In Press, Corrected Proof,Journal of Alloys and Compounds,pp.
[27]I. Y. Park, D. Kim, J. Lee, S. H. Lee, and K.-J. Kim,2007,"Effects of urea concentration and reaction temperature on morphology of gadolinium compounds prepared by homogeneous precipitation",106,Materials Chemistry and Physics,pp.149-157
[28]T. Peng, L. Huajun, H. Yang, and C. Yan,2004,"Synthesis of SrAl2O4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties",85,Materials Chemistry and Physics,pp.68-72
[29]L. An, J. Zhang, M. Liu, S. Chen, and S. Wang,2008,"Preparation and photoluminescence of Sm3+ and Eu3+ doped Lu2O3 phosphor",30,Optical Materials,pp.957-960
[30]T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda,1997,"Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors",32,Materials Research Bulletin,pp.501-506
[31]P. K. Sharma, R. Nass, and H. Schmidt,1998,"Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu(III) doped yttria",10,Optical Materials,pp.161-169
[32]J. McKittrick, L. E. Shea, C. F. Bacalski, and E. J. Bosze,1999,"The influence of processing parameters on luminescent oxides produced by combustion synthesis",19,Displays,pp.169-172
[33]O. A. Serra, S. A. Cicillini, and R. R. Ishiki,2000,"A new procedure to obtain Eu3+ doped oxide and oxosalt phosphors",303-304,Journal of Alloys and Compounds,pp.316-319
[34]J. Hao, S. A. Studenikin, and M. Cocivera,2001,"Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis",93,Journal of Luminescence,pp.313-319
[35]C. Cannas, M. Casu, A. Musinu, G. Piccaluga, A. Speghini, and M. Bettinelli,2002,"Synthesis, characterization and optical spectroscopy of a Y2O3-SiO2 nanocomposite doped with Eu3+",306,Journal of Non-Crystalline Solids,pp.193-199
[36]J. Zhang, Z. Tang, Z. Zhang, W. Fu, J. Wang, and Y. Lin,2002,"Synthesis of nanometer Y2O3:Eu phosphor and its luminescence property",334,Materials Science and Engineering A,pp.246-249
[37]J. Zhang, Z. Zhang, Z. Tang, Y. Lin, and Z. Zheng,2002,"Luminescent properties of Y2O3:Eu synthesized by sol-gel processing",121,Journal of Materials Processing Technology,pp.265-268
[38]C. He, Y. Guan, L. Yao, W. Cai, X. Li, and Z. Yao,2003,"Synthesis and photoluminescence of nano-Y2O3:Eu3+ phosphors",38,Materials Research Bulletin,pp.973-979
[39]Y. Lin, C.-W. Nan, N. Cai, X. Zhou, H. Wang, and D. Chen,2003,"Anomalous afterglow from Y2O3-based phosphor",361,Journal of Alloys and Compounds,pp.92-95
[40]Y. Nakanishi, K. Kimura, H. Kominami, H. Nakajima, Y. Hatanaka, and G. Shimaoka,2003,"Dependence of structural and luminescent characteristics of Y2O3:Er thin film phosphors on substrate",212-213,Applied Surface Science,pp.815-819
[41]劉如熹、王健源,2001,"白光發光二極體製作技術21世紀人類的新曙光",全華科技圖書,台北,pp.
[42]劉如熹、劉宇恒,2006,"發光二極體用氧氮螢光粉介紹",全華科技圖書,台北,pp.
[43]陳政次,2005,"氧化釔和氧化鋅摻雜鋱之發光特性研究",逢甲大學,碩士論文
[44]溫佑良,2003,"不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究",國立成功大學,碩士論文
[45]羅吉宗,1997,"固態物理",滄海書局,台中,pp.
[46]蔡濱祥,2005,"尖晶石系(MgxZn1-x)(In2-yGay)O4:Eu3+,Tb3+螢光粉體製備及其光致發光特性研究",國立成功大學,博士論文
[47]S. L. Jones, D. Kumar, K. G. Cho, R. Singh, and P. H. Holloway,1999,"Pulsed laser deposition of Y2O3?u thin film phosphors",19,Displays,pp.151-167
[48]J. W. Gadzuk,1969,"Many-body tunneling-theory approach to field emission of electrons from solids",15,Surface Science,pp.466-482
[49]R. D. Young,1959,"Theoretical Total-Energy Distribution of Field-Emitted Electrons",113,Physical Review,pp.110
[50]T. D. C. Q. H. Wang, J. Y. Dai, R. P. H. Chang,A. R. Krauss,1997,"Field emission from nanotube bundle emitters at low fields",70,Appl. Phys. Lett.,pp.24
[51]C. Kleint and K. Mkel,1973,"Analysis of adsorbate-substrate configuration by admolecule-probe field emission microscopy",40,Surface Science,pp.343-359
[52]M. S. Mousa,1992,"Field electron emission studies on zinc oxide coated tungsten microemitters",266,Surface Science,pp.110-120
[53]藍永強、鍾岳宏、徐兆鋐、張德安、柳克強,2006,"電漿科學與平面顯示器",28,物理雙月刊,pp.452-465
[54]葉昆明 and 陳雲,2005,"有機電激發光顯示技術",385,科學發展,pp.58-63
[55]蘇水祥, 橫山明聰, 朱健慈, and 江俊德,2002,"電激發光新視界",349,科學發展,pp.38-45
[56]陳志昇,2003,"奈米ZnS:Mn 添加含羧基酸之螢光粉的合成與發光特性",逢甲大學,碩士論文
[57]R. C. Ropp,1991,"Luminescence and the solid state",Elsevier Science Publishers,Netherlands,pp.
[58]陳慧薇,2003,"合成硫化鋅及添加錳之硫化鋅奈米粒子及其特性研究",私立中原大學,碩士論文
[59]鄭煜舜,2006,"鎂離子摻雜之 YAG: Tb 螢光粉體其晶體結構與光學性質",國立成功大學,碩士論文
[60]S. Ray, A. Patra, and P. Pramanik,2007,"Photoluminescence properties of nanocrystalline Tb3+ doped Y2O3 phosphor prepared through a novel synthetic route",30,Optical Materials,pp.608-616
[61]馬振基,2005,"奈米材料原理與應用",全華科技圖書,台北,pp.
[62]蘇英源 and 郭金國,2001,"粉末冶金學",全華科技圖書股份有限公司,台北,pp.5-1~5-26
[63]黃渝晨,2003,"硫化鋅共摻雜銅、錳之發光特性研究",逢甲大學,碩士論文
[64]A. Wiewi´ra, J. L. P´ez-Rodr´uez, L. A. Perez-Maqueda, and J. Drapala,2003,"Particle size distribution in sonicated high- and low-charge vermiculites",24,Applied Clay Science,pp.51-58
[65]M. C. Jim´ez de Haro, J. L. P´ez-Rodr´uez, J. Poyato, L. A. P´ez-Maqueda, V. Ram´ez-Valle, A. Justo, A. Lerf, and F. E. Wagner,2005,"Effect of ultrasound on preparation of porous materials from vermiculite",30,Applied Clay Science,pp.11-20
[66]大英簡明百科,http://sc.hrd.gov.tw/ebintra/Content.asp?ContentID=8017
[67]相機之家,www.xiangji.cn/school/20083181032487341.html
[68]R. P. Institute,http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap17/chap17.htm
[69]成會明,2004,"奈米碳管",五南圖書,台北,pp.
[70]A. H. Kitai,2003,"Oxide phosphor and dielectric thin films for electroluminescent devices",445,Thin Solid Films,pp.367-376
[71]林育鋒,2006,"硫化物半導體Ba2ZnS3為基質之螢光粉體製備及其光致發光特性研究",國立成功大學,碩士論文
[72]K. S. Suslick, S.-B. Choe, A. A. Cichowlas, and M. W. Grinstaff,1991,"Sonochemical synthesis of amorphous iron",353,Nature,pp.414-416
[73]陳坤賢,2002,"表面處理和導電鍍膜對CRT螢光粉發光效率的影響",交通大學 碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔