(3.235.139.152) 您好!臺灣時間:2021/05/11 12:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李天倫
研究生(外文):Tien-Lun Li
論文名稱:時域有限差分法於RFID標籤天線之雷達散射截面分析
論文名稱(外文):Radar Cross Section Analysis for RFID Tag Antennas with Finite-Difference Time-Domain
指導教授:李順晴李順晴引用關係
指導教授(外文):Shun-Ching Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:時諧場雷達散射截面無線射頻辨識系統
外文關鍵詞:Time-harmonic filedRadar cross sectionRadio Frequency Identification System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:1
  一般而言雷達裝置是以一個高頻能量的波束照射目標,並利用偵測到所形成的回波使雷達裝置產生影像,此種影像生成通常以雷達截面積表示之,也就是目標受到雷達電磁波的照射後,向雷達接收方向散射電磁波能力的量度,其截面積越大,代表在該方向上散射的訊號強度越大。由於有關於雷達散射截面的討論範圍甚廣,故本研究將利用兩種不同形狀與參數條件的模組,區分成原理以及應用兩方面做討論。
  本文首先將以二維平面上的金屬方柱為目標,應用時域有限差分方法(Finite-Difference Time-Domain,FDTD)分析自由空間中的電磁散射問題,藉以求得雷達散射截面(Radar Cross Section,RCS)之分佈現象。本文主要分為前後兩部份,前半部份為分析總場區、散射近場區以及散射遠場區的電磁場分佈,其中總場區為入射場與散射場之和。本文將FDTD計算區域劃分為總場區和散射場區,如此即可應用惠更斯原理(Huygens’ principle)在總場區與散射場區的連接邊界處設置入射波,亦可在吸收邊界處設置吸收邊界條件,利用有限計算區域就能夠模擬散射場區的電磁散射過程,而其中吸收邊界條件則是採用目前最為普遍接受的Mur G.(Mur)吸收邊界。在後半部份則根據等效原理在總場邊界和吸收邊界之間作一封閉面,其邊界負責儲存散射數據,等前半部份之電磁場計算到達穩態後,提取數據再利用時諧場頻域外推公式進行散射遠場區的外推,即可計算在自由空間中任一方向的散射場,藉以求得雷達散射截面之分佈現象。並且,在本文的結果與討論中將更進一步探討應用在無線射頻辨識系統(Radio Frequency Identification,RFID)上的天線在不同條件下所能產生的最大輸出功率。
  The general radar device to beam the target by a wave of high-frequency energy and bring the image by reflect wave witch be detected, this kind of image called Radar cross section(RCS), that also mean intensity of electromagnetic scattering brought by the target when it beamed by electromagnetic waves, if the section become larger, and then the intensity of scattered signal will be larger in the direction of conduct. In virtue of there have extensive discuss range about RCS, so this research will use two different conditions, parameter and shape of the module, and divided into two aspects which are application and principle to discuss.
  this article will take a two-dimensional metal square cylinder as target, use Finite-Difference Time-Domain(FDTD) method to analyze electromagnetic scattering problem in the free space, so as to observe the distributive situation of RCS. The article is divided into two parts, the first part is analyzing electromagnetic filed's distribution in the three zones, they are total-filed zone, near-filed zone of scattering and far-filed zone of scattering, and the total-filed zone is equal to incident-filed add scattering-filed. The article is also divided FDTD computational domain into total-filed zone and filed zone of scattering, so that not only can use Huygens theorem to set up a incident wave at connective boundary of total-filed zone and filed zone of scattering, but also can set up the condition at absorbing boundary, and simulate electromagnetic scattering of the filed zone of scattering by finite computational domain, by the way, the absorbing boundary condition adopt Mur G. absorbing boundary condition which is the most widely accepted. The second part is according to equivalence principle set up a close domain between connective and absorbing boundary, the boundary have to save the data of scattering, when electromagnetic finished calculation then bring up the data and extrapolate the far-filed zone of scattering by the formulation of extrapolate time-harmonic filed frequency domain, that can calculate an arbitrary filed of scattering in the free space to get the distributive situation of RCS. Finally, the results in this paper will further explore and discuss the application of the maximum output power of Radio Frequency Identification System(RFID) tag antennas in different conditions.
目 錄
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 VIII
圗目錄 IX
符號說明 XII
第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 1
1.3 研究動機與目的 8
1.4 文章架構 8
第二章 理論分析 12
2.1 馬克斯威爾方程組 12
2.2 吸收邊界條件 15
2.2.1 Engquist-Majda吸收邊界條件 15
2.2.2 二階近似吸收邊界條件 18
2.2.3 二維Mur吸收邊界條件 18
2.3 入射波源的模擬 19
2.3.1 時諧場源 20
2.3.2 窗函數 20
2.3.3 時諧場振幅和相位的提取 21
2.4 近-遠場外推 22
2.4.1 等效原理 22
2.4.2 二維時諧場的外推 24
2.4.3 迴路積分計算的平均值方法 27
2.5 雷達散射截面 29
第三章 數值方法 37
3.1 有限時域差分法 37
3.1.1 直角座標中的FDTD 38
2.1.2 分區均勻介質之討論 41
3.2 數值穩定性 41
3.2.1 時間離散間隔的穩定性要求 41
3.2.2 Courant穩定性條件 42
3.2.3 空間格點色散 44
3.3 Mur吸收邊界條件的二維FDTD 44
3.4 二維角點的處理 46
3.5 總場邊界條件 47
3.5.1 二維FDTD情形 48
3.6 二維情形下平面波的加入 50
第四章 結果與討論 63
4.1 case1-無限高度之金屬方柱的電磁場模擬 63
4.1.1 基本假設 63
4.1.2 網格化離散 64
4.1.3 FDTD近場計算 65
4.1.3.1 TM波模擬分析 65
4.1.3.2 TE波模擬分析 67
4.1.4 外推遠場RCS 67
4.2 case2-RCS於無線射頻辨識系統(RFID)之應用 67
4.2.1 RFID簡介 68
4.2.2 基本假設 68
4.2.3 TM波電場強度模擬與RCS分析 69
4.2.4 改變天線尺寸與傳輸距離後的輸出功率情形 69
4.2.5 改變天線外形與金屬面積後的輸出功率情形 70
4.2.6 RFID模擬分析總結 70
第五章 結論 96
參考文獻 97
[1]Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media,” IEEE Trans. Antennas Propagat., May. 1966, AP-14(3): 302~307
[2]Taylor C. D., Lam D. H. and Shumpert T. H., “Electromagnetic pulse scattering in time-varying inhomogeneous media,” IEEE Trans. Antennas Propagat., Sept. 1969, AP-17(5): 585~589
[3]Taflove A. and Brodwin M. E., “Numerical solution of steady-state Electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech., Aug. 1975, MTT-23: 623~630
[4]McDonald B. H. and Wexler A., “Finite-element solution of unbounded field problems,” IEEE Trans. Microwave Theory Tech.(1972 Symp. Issue), Dec. 1972, MTT-20: 841~847
[5]Wilton D. R. and Mittra R., “A new numerical approach to the calculation of electromagnetic scattering properties of two-dimensional bodies of arbitrary cross section,” IEEE Trans. Antennas Propagat., May. 1972, AP-20: 310~317
[6]Wu T. K. and Tsai L. L., “Numerical analysis of electromagnetic field in biological tissues,” Proc. IEEE(Lett.), Aug. 1974, Vol. 62: 1167~1168
[7]Harrington R. F., “Field Computation by Moment Methods,” 1968, New York: Macmillan, ch. 3
[8]Mur G., “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagn. Compat., Nov. 1981, EMC-23(4): 377~382
[9]Longmire C. L., “State of the art in IEMP and SGEMP calculations,” IEEE Trans. Nucl. Sci., Dec. 1975, vol. NS-22: 2340~2344
[10]Merewether D. E., “Transient currents induced on a metallic body of revolution by an electromagnetic pulse,” IEEE Trans. Electromagn. Compat., May. 1971, vol. EMC-13: 41~44
[11]Kunz K. S. and Lee K. M., “A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment: Part 1-The method and its implementation,” IEEE Trans. Electromagn. Compat., May. 1978, vol. EMC-20: 328~333
[12]Taflove A., ” Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems,” IEEE Trans. Electromagn. Compat., 1980, vol. EMC-22: 191~202
[13]Engquist B. and Majda A., ” Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp., July. 1977, vol. 31: 629~651
[14]Umashankar K. R. and Taflove A., ” A novel method of analyzing electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat., Nov. 1982, vol. EMC-24(4): 397~405
[15]Britt C. L., “ Solution of EM scattering problems using time domain techniques,” IEEE Trans. Antennas Propagat., Sept. 1989, AP-37(9): 1181~1192
[16]Yee K. S., Ingham D. and Shlager K., ” Time-domain extrapolation to the far field based on FDTD calculations,” IEEE Trans. Antennas Propagat., Mar. 1991, AP-39(3): 410~413
[17]Luebbers R. J., Kunz K. S., Schneider M. and Hunsberger F., “ A finite difference time domain near zone to far zone transformation,” IEEE Trans. Antennas Propagat., April. 1991, AP-39(4): 429~433
[18]Luebbers R. J., Ryan D. and Beggs J., “ A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antennas Propagat., July. 1992, AP-40(7): 848~851
[19]Berenger J. P., “ A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., Oct. 1994, 114(2): 185~200
[20]Berenger J. P., “ Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., Sept. 1996, 127(2): 363~379
[21]Berenger J. P., “ Perfectly matched layer for the FDTD solution of wave-structure interaction problem,” IEEE Trans. Antennas Propagat., Jan. 1996, AP-44(1): 110~117
[22]Sacks Z. S., Kingsland D. M., Lee D. M. and Lee J. F., “ A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat., Dec. 1995, AP-43(12): 1460~1463
[23]Gedney S. D., “ An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices,” IEEE Trans. Antennas Propagat., Dec. 1996, AP-44(12): 1630~1639
[24]Mingwu Yang and Yinchao Chen, “ AutoMesh: An automatically adjustable, nonuniform, orthogonal FDTD mesh generator,” IEEE Antennas and Propagation Magazine., April. 1999, vol. 41, No. 2
[25]Wayan Sudiarta I., “ An absorbing boundary condition for FDTD truncation using multiple absorbing surfaces,” IEEE Trans. Antennas Propagat., Dec. 2003, vol. 51, No. 12
[26]Aditi Ray, G. Kondayya and S. V. G. Menon, ” Developing a finite difference time domain parallel code for nuclear electromagnetic field simulation,” IEEE Trans. Antennas Propagat., April. 2006, vol. 54, No. 4
[27]Mohanan P. et al., “ FDTD analysis of rectangular dielectric resonator antenna,” Journal of the European Ceramic Society., December. 2006, 27(2007), 2753-2757
[28]Bijumon P. V. et al., “ Enhanced bandwidth microstrip patch antennas loaded with high permittivity dielectric resonators,” Microwave Optical Technol. Lett., November. 2002, vol. 35, 237-330
[29]Leubbers and Langdon, H. S., “ A simple feed model that reduces time steps needed for FDTD antenna and Microstrip calculations,” IEEE Trans. Antenn. Propag., July. 1996, vol. 44, 1000-1005
[30]Long S. A. et al., “ The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antenn. Propag., 1983, vol. 31, 406-412
[31]Kishk A. A.et al., “ Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications,” IEEE Trans. Antenn. Propag., 2003, vol. 51, 1996-2006
[32]Mongia R. K. and Ittipiboon A., “ Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag., 1997, AP-45, 1348-1356
[33]Liang Chao et al., “ Numerical Simulation of Plasma Antenna with FDTD Method,” Chinese Phys. Lett., July. 2008, vol. 25, 3712-3715
[34]Yohei Taniguchi, Yoshihiro Bada, Naoto Nagaoka and Akihiro Ametani, “ An improved thin wire representation for FDTD computation,” IEEE Trans. Antennas Propagat., Oct. 2008, vol. 56, No. 10
[35]Holland R. and Simpson L., “ Finite-difference analysis of EMP coupling to thin struts and wires,” IEEE Trans. Electromagn. Compat., May. 1981, vol. 23: 88~97
[36]Makinen R. M., Juntunen J. S. and Kivikoski M. A.,” An improved thin-wire model for FDTD,” IEEE Trans. Micro. Theory Tech., May. 2002, vol. 50, No 5: 1245~1255
[37]Edelvik F., “ A new technique for accurate and stable modeling of arbitrary oriented thin wires in the FDTD method,” IEEE Trans. Electromagn. Compat., May. 2003, vol. 45: 88~97
[38]Demarest K., Huang Z. and Plumb R., “ An FDTD near to far zone transformation for scatterers buried in stratified grounds, ” IEEE Trans. Antennas Propagat., Aug. 1996, AP-44(8): 1150~1157
[39]Kragalott M., Kluskens M. S. and Pala W. P., “ Time-domain fields exterior to a two dimensional FDTD space,” IEEE Trans. Antennas Propagat., Nov. 1997, AP-45(11): 1655~1663
[40]Balanis C. A., “ Advanced Engineering Electromagnetics,” John Wiley & Sons., 1989
[41]Fusio M., “ FDTD algorithm in curvilinear coordinates,“ IEEE Trans. Antennas Propagat., Jan. 1990, AP-38(1): 76~89
[42]Schneider J. B. and Kruhlak R. J., “ Dispersion of homogeneous and inhomogeneous waves in the Yee finite-difference time-domain grid,” IEEE Trans. Microwave Theory Tech., Feb. 2001, MTT-49(2): 280~287
[43]葛德彪,閆玉波, 2005, “電磁波時域有限差分法,” 西安電子科技大學出版社.
[44]陳瑞順, 2007, “RFID概論與應用,” 全華圖書股份有限公司.
[45]根日屋 英之,植竹 古都美,溫榮弘譯, 2004, “無線通訊技術與RFID,” 全華科技圖書股份有限公司.
[46]岸上順一,溫榮弘譯, 2006, 溫榮弘譯“圖解RFID,” 全華科技圖書股份有限公司.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔