(3.235.139.152) 您好!臺灣時間:2021/05/11 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉長軒
研究生(外文):Chang- Xuan Liu
論文名稱:射頻微機電開關之設計與分析
論文名稱(外文):Design and analysis of RF MEMS switch
指導教授:賴榮哲賴榮哲引用關係
指導教授(外文):Rong - Jer Lai
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:射頻微機電開關懸臂樑電容式專利分析
外文關鍵詞:Radio frequency MEMS Switch、Cantilever beam、Capacitive type、Patent AnalysisAND
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
首先針對射頻微機電開關進行美國專利之檢索,並製作其管理面分析及技術面分析。該專利分析之結果顯示:目前射頻微機電開關之技術分別以電容式及懸臂樑式為主,故本研究以此兩種開關為模擬之標的。
本研究分別使用ANSYS及HFSS進行上述兩種型式開關之機械結構模擬及高頻電磁波模擬。在開關設計方面:
1. 電容式射頻微機電開關以改變上電極薄膜之長度、寬度、厚度及空氣間隙(介電層厚度)並使用兩種不同薄膜材料(金與鋁) 。
2. 懸臂樑式射頻微機電開關則改變介電層(懸臂樑)之厚度、上電極薄膜之寬度及兩種不同之上電極薄膜材料(金與鋁) 。
研究結果發現:
A.機械特性:
(1) 就電容式射頻微機電開關而言:
 位移特性:當上電極之長、寬及厚度均相同時,上電極使用鋁質薄膜之開關,其位移皆大於金質薄膜。位移隨上電極之長度、寬度或厚度之增加而增加。
 自然頻率:鋁質上電極薄膜,自然頻率大於金質。不論空氣間隙與上電極薄膜材料為何,自然頻率均隨上電極長度及寬度之增加向下降但隨厚度增加向上升。
 驅動電壓:若使用相同的上電極薄膜材料,空氣間隙較大時,會產生較大之吸附電壓。此外,比較厚的上電極薄膜驅動電壓比較高。若上電極薄膜越短,其驅動電壓越高。
(2) 懸臂樑式射頻微機電開關:
 位移特性:相同之介電層厚度,位移量隨上電極增加而變小,寬度隨介電層厚度增加而上升。當上電極選用金質材料時,其位移皆大於使用鋁質材料。
 自然頻率:隨介電層之厚度上升而增加。隨上電極薄膜之寬度下降而增加。不論介電層厚度及上電極寬度為何,鋁質上電極薄膜自然頻率均大於金質。
 驅動電壓:彈簧常數較大者,驅動電壓較高。
B.在電磁特性方面:
(1) 就電容式射頻微機電開關而言:
 插入損失:不論使用金質或鋁質薄膜,插入損失均隨著薄膜寬度下降而變小。
 隔離度:不論橋接薄膜使用鋁質或金質材料,其隔離度均隨介電層厚度下降而增加。
(2) 懸臂樑式射頻微機電開關
 隔離度:不論介電層厚度及上電極之材料為何,懸臂樑開關之隔離度均會隨著上電極之寬度上升而增加。
First of all, the patent documents on the RF MEMS switch were retrieved from the USPTO database, and analysis was carried out with regard to the aspects of management and technology. The result of patent analysis shows that main stream of the technologies of RF MEMS switch lies on the electric capacitive type and cantilever beam type, so that both types will be the target of the study.
In this study both ANSYS and HFSS software are used to simulate the feature of structure and the response under high frequency electromagnetic wave, respectively .
For the RF MEMS switch of the electric capacitive type, the length、width and thickenss of thin layer upper electrode are varied. Both gold and aluminum are used to be the membrane material .On the other hand, for the RF MEMS switch of cantilever beam type, the thickenss of dielectric layer and the width of upper electrode were taken variation of and both gold and aluminum are chosen to be the material of membrane.
From the study it was found:
A. with respect to the structure feature:
1. as for as the RF MEMS switch of electric capacitive type is concerned:
In terms of displaycement of electrode:
When the size of upper electrode is the same, the thin film made from aluminum will have larger displacement will increase with the increasing dimensions (i.e. length, width or thickness) of upper electrode.
In terms of natural frequency:
The natural frequency of thin film made from aluminum will be larger than made from gold. No matter what the air gap height and thin film material will be, the natural frequency will become smaller with increasing of length and width of upper electrode,but larger with increase of the thickenss.

In terms of driving voltage:
When the air gap height becomes larger, the driving voltage will increase for the same thin film materiall.Furthermore, thicker thin film will have high driving voltage. The thiner and the shertor thin film, the high the driving voltage.
2. as far as the RF MEMS switch of the cantilever beam type is concerned:
In terms of displaycement of electrode:
The displaycement will decrease with the increase of upper electrode width and increase with the increase of dielectric thickenss, if the same thickness of dielectrics is used.
In terms of natural frequency:
The natural frequency will increase with the increase of dielectric thickenss, and with decrease of thin film width. No matter what the dielectric thickenss and the upper electrode width will be, the natural frequency of thin film made from aluminum will be larger than that made from gold.
In terms of driving voltage:
The electrode with larger spring constant also have higher driving voltage.
B. with respect to the electromagnetic feature:
1. as far as the RF MEMS switch of the electric capacityive type in concerned:
In terms of insert loss:
The insert loss will decline with the decrease of thin film width, no matter what the material for the stin film is used.
In terms of isolateion:
The isolateion will always increase with the decrease of the thin film width.
2. as far as the RF MEMS switch of the cantilever beam type is concerned, the isolateion will increase with the increase of upper electrode width.
中文摘要 I
ABSTRACT III
目 錄 V
表 目 錄 VII
圖 目 錄 VIII
第一章 緒 論 1
1.1簡介 1
1.2文獻回顧 2
1.3研究目的 4
1.4論文架構 6
第二章 相關理論 8
2.1專利與專利分析 8
2.1.2專利分析 8
2.2 射頻微機電開關 9
2.3射頻微機電開關之設計 11
第三章 專利分析 26
3.1專利檢索 26
3.2 管理面分析 26
3.3 技術面分析 31
第四章 設計與模擬 38
4.1射頻微機電開關之設計 38
4.2結構分析 39
4.3高頻電磁波模擬 68
第五章 結 論 78
5.1 結果與比較 78
5.2 總結 82
參考文獻 85
[1] R. P. Feynam , “There’s Plenty of Room at the Bottom ,” Journal of Microelectromechanical Systems, vol.1,no.1,pp.60-66,1992.
[2]. C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE,Vol. 86, No. 8, Aug. 1998, pp. 1756-1768
[3] K. Petersen, “Micromechanical membrane switches on silicon,” IBM J. Res. Develop., vol. 23, no. 4, pp. 367-385, July, 1979
[4] L. E. Larson, R. H. Hackett, M. A. Melendes, and R. F. Lohr, “Micromachined microwave actuator (MIMAC) technology- a new tuning approach for microwave integrated circuits,” in Proc. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., pp. 27-30 , 1991
[5] J. J. Yao and M. F. Chang, “A surface micromachined miniature switch for telecommunication applications with signal frequencies from dc to up to 4 GHz,” in Proc. 8th Int. conf. on Solid State Sensors and Actuators, pp. 384-387, 1995.
[6] C. Goldsmith, T. H. Lin, B. Power, W. R. Wu, B. Novell, “Micromechanical membrane switches for microwave application,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 91-94, 1995.
[7] V. Milanovic, M. Gaitan, E. D. Bowen, and M. E. Zaghloul, “Micromachined coplanar waveguides in CMOS technology,” IEEE Microwave and Guided Wave Letters, Vol. 6, No. 10 , Oct. 1996, pp. 380-382.
[8] C. Goldsmith, Y. Zhimin, S. Eshelman, and D. Denniston, “Performance of low-loss RF MEMS capacitive switches,”IEEE Microwave and Guided Wave Letters,vol. 8 , No. 8 , Aug. 1998, pp. 269-271.
[9] S. Pacheco, C. T. Nguyen, and L. P. B. Katehi, “Micromechanical electrostatic K-band swithches,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1569-1572, 1998
[10] S. C. Shen and M. Feng, “Low actuation voltage RF MEMS switches with signal frequencies from 0.25 GHz to 40 GHz,” Proceedings of IEEE International Electronics Device Meeting, December 1999, pp. 689-692
[11] C. Chang and P. Chang, “Innovative micromachined microwave switch with very low insertion loss,” Sensors and Actuators, vol. 79, pp. 71-75, 2001.
[12] J. B. Muldavin and G. M. Rebeiz, “Inline capacitive and dc-contact MEMS shunt switches,” IEEE Microwave and wireless componets lett., vol. 11, pp. 334-336, Aug. 2001
[13] J. Rizk, G. L. Tan, J. B. Muldavin, and G. M. Rebeiz, “High isolation W-band MEMS switches,” IEEE Microwave and wireless componets lett., vol. 11, pp. 10-12, Jan. 2001
[14] S. Duffy, C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt, C. Keast, and M. Gouker, “MEMS Microswitches for reconfigurable microwave circuitry,” IEEE Microwave and wireless componets lett., vol. 11, pp. 106-108, Mar. 2001.
[15] J. Y. Park, G. H. Kim, K. W. Chung, J. U. Bu, “Electroplated rf MEMS capacitive switches,” in Proc. Thirteenth Annual Int. Conf. Micro Electro Mechanical System, pp. 639-644, 2000.
[16] D. Balaraman, S. K. Bhattacharya, F. Ayazi and J. Papapolymerou, “Low-Cost Low Actuation Voltage Copper RF MEMS Switches,” IEEE MTT-S Digest., pp. 1225-1228, 2002
[17] D. Becher, R. Chan, M. Hattendorf and M. Feng, “Reliability Study of Low-Voltage RF MEMS Switches,” in GaAsMANTECH Conf., 2002
[18] D. Peroulis, S. P. Pacheco, K. Sarabandi, Linda P. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Microwave and Techniques, vol. 51, pp. 259-270, Jan. 2003.
[19] K. U. Harms, and J. T. Horstmann, “Fabrication concept for a CMOS-compatible electrostatically driven surface MEMS switch for RF applications,” Microelectronic Engineering, Vol. 73, 2004, pp. 468-473.
[20] M. Tang, A.B.Yu, A. Q. Liu, A. Agarwal, S. Aditya, and Z. S. Liu, “High isolation X-band MEMS capacitive switches,” Sensors and Actuators, A: Physical, Vol. 120, No. 1, Apr. 29 2005, pp. 241-248.
[21] Zhen Peng, Xiaobin Yung , James C.M.Hwang, David Forehand and Charles L. Goldsmith, “Top vs. Bottom Charging of the Dielectric in RF MEMS Capacitive Switches”, Proceedings of Asia-Pacific Microwave Conference 2006
[22] Yong-hua Zhag, Guifu Ding , Xiaofeng Shun , Donghua Gu ,Bingchu Cai , Zongsheng Lai, “Preparing of a high speed bistable electromagnetic RF MEMS switch”, Sensors and Actuators, A: Physical, Vol. 134, 2007 pp.532-537
[23] V . Leus And D . Elata, “Predicting the switching time of electrostatic actuators”, IEEE MEMS 2008,Tucson, AZ,USA , Jan 13-17,2008 pp491-494
[24] J. B. Muldavin, and G. M. Rebeiz , “High-Isolation CPW MEMS Shunt Switches-Part1﹕Modeling,” IEEE Trans, Microwave Theory Tech., Vol.48, pp.1045-1052, June 2000.
[25] http://www.lib.thit.edu.tw/old/id24-951011.htm
[26]陳達仁、黃慕萱,2002,專利資訊與專利檢索,文華圖書館管理資訊股份有限公司,pp.11~13;28;104~106,台北
[27]賴榮哲,2002,專利分析總論,翰蘆圖書出版有限公司,pp.550~551;553~554,台北
[28]林明緯,2002,專利分析與專利投資組合建構-以半導體系統單晶片技術為例,私立元智大學,管理研究所碩士論文
[29] Elliott R.Brown,“RF-MEMS Switches for Reconfigurable Integrated Circuits”,Microwave Theory and Techniques,IEEE Transactions on Vol 46,No.11,Nov.1998, pp.1868~1880
[30] L.E.Larson,“Microwave MEMS Technology For next-generation wirelesss communications-invited paper ,”Microwave Symposium Digest,1999 IEEE MTT-S International Volume 3,13-19 June 1999 pp.1073-1076
[31]張松濤,2004,電容式射頻微機電開關之設計及製作,國立中興大學,精密工程研究所碩士論文,pp.5~6
[32] C .Goldsmith ,J , Kleber , B , Pillans, D.Forehand,A.Malczewski and P . Frueh,“RF MEMS:Benefits & Challenges of an Evolving RF Switch Technology”,Gallium Arsenide Integrated Circuit (GaAs IC) Symposium ,2001,23rd Annual Technical Digest 21-24 Oct.2001 pp.147-148
[33] Guoan Wang, “RF MEMS Switches with Novel Materials and Micromachining Techniques for SOC/SOP RF Front Ends”, Ph.D. Dissertation, Georgia Institute of Technology School of Electrical and Computer Engineering, Atlanta USA, Dec 2006.
[34] G.M. Rebeiz , “RF MEMS Theory , Design , and Technology”,Chapter2 ,
pp.21~38
[35] G.M. Rebeiz , “RF MEMS Theory , Design , and Technology”,Chapter3,
pp. 59~69
[36] Vijay Varadan K.J Vinoy , K. A . Jose, “RF MEMS and Their Applications”,ISBN:0-470-84619-4 , Chapter 3. pp.112 ,August 2003
[37] G.M. Rebeiz , “RF MEMS Theory , Design , and Technology”,Chapter4,
pp. 87~98
[38] David M. Pozar, Microwave engineering, 3rd ed. Hoboken, Wiley, 2005
[39]盧坤岳,2006,射頻微機電天線與開關之專利分析與特性模擬,國立高雄應用科技大學,機械與精密工程研究所碩士論文,pp.10、38
[40] http://www.ati-i.com/index.html,2008/11/19
[41] http://www.bosch.com.tw/content/language1/html/2759.htm,2008/11/24
[42] http://www.idcmotion.com/discover/index.html,2008/11/25
[43] G.M. Rebeiz , “RF MEMS Theory , Design , and Technology”,Chapter5,
pp. 122
[44] United States Patent No: 5578976; Inventor: Yao; Jun J.(Thousand Oaks, CA); “Micro electromechanical RF switch”, Assignee: Rockwell International Corporation(Seal Beach, CA), Nov 1996
[45] J. Y. Park, G. H. Kim, K. W. Chung, and J. U. Bu, “Electroplated RF MEMS capacitive switches,” in Proc. 13th Annual Int. Conf. Micro-Electro-Mechanical System, pp. 639-664, 2000.
[46] G.M. Rebeiz , Muldavin, J.B, “RF MEMS switches and switch circuits”. IEEE microwave magazine ,pp. 59-71,December 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔