(35.175.212.130) 您好!臺灣時間:2021/05/15 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪嘉良
研究生(外文):Chia-Liang Hung
論文名稱:氧化鋅鋁薄膜之製備與蝕刻研究
論文名稱(外文):Research of Textured and Fabrication of Aluminum-doped Zinc Oxide Films
指導教授:鄭宗杰鄭宗杰引用關係
指導教授(外文):Tsung-Chie Cheng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:100
中文關鍵詞:氧化鋅鋁濺鍍沉積表面糙化
外文關鍵詞:Aluminum-doped Zinc OxideSputteringSurface Textured
相關次數:
  • 被引用被引用:3
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究氧化鋅鋁(AZO)薄膜沉積在玻璃、SiO2 與ITO 玻璃基板上,藉
由改變蝕刻參數將薄膜表面形成具有奈米柱之結構。首先進行磁控濺鍍AZO 薄膜
之參數測試,分別由直流與射頻兩種類型之電源供應,以氬氣作為製程氣體,探
討改變濺鍍參數(濺鍍功率與氣體流量)以獲得良好的電阻率與穿透度。隨後分別以
酸性與鹼性溶液進行蝕刻AZO 薄膜,主要改變溶液的濃度與蝕刻的時間,藉此得
到奈米尺度之柱狀結構,其結果發現在同樣的蝕刻時間下,隨著蝕刻溶液之濃度
的增加,AZO 則加速反應而不易形成奈米柱結構。以XRD 分析在低濃度下蝕刻
AZO 薄膜,結果發現蝕刻時間與奈米柱之間的空隙成正比關係。由於蝕刻後所得
到的電阻率提高幾個數量級,為了同時具有低電阻率與高穿透度,本研究將其蝕
刻後的奈米柱結構與ITO 透明導電玻璃結合在一起,藉由改變其構造以獲得最高
的穿透度與較低的反射率。實驗的結果得知以射頻功率500 W、氬氣流量60 sccm
II
濺鍍AZO 薄膜,可以使薄膜的電阻率達到1.1×10-3 Ω·cm;以射頻功率400 W 及氬
氣60 sccm 的製程條件下沉積厚度2000 Å 之AZO 薄膜能得到94.44 %之穿透度。
以濃度2.5 %之KOH 蝕刻AZO 薄膜120 秒,能使穿透度提升至95.2 %,但其電阻
率增加約44 倍。將AZO 沉積在厚度為2500 Å 之ITO 玻璃基板上並進行蝕刻,以
AZO/ITO/Glass 之構造能獲得約87.94 % 的穿透度; 以Textured of
AZO/ITO/Glass/Textured of AZO 的構造能得到84.46 %的穿透度;以Textured of
AZO/ITO/Glass 的9.57 %反射率為最低,而這些構造之透明導電薄膜的電阻率與
ITO 相近,約在6 Ω/□。
In this study, aluminum-doped zinc oxide (AZO) thin films are deposited on
substrates such as: glass, SiO2 and ITO glass, through the change of etching parameter,
the thin film surface is formed with nano-column structure. First, magnetron sputtering
is used for determining the parameter of sputtering of AZO thin films, that is, power
supplies of DC and RF (radio frequency) are used respectively, and Ar is used as the
process gas to investigate the change of sputtering parameters (sputtering power and gas
flow rate) so as to acquire good resistivity and transmission. Later on, acidic and basic
solutions are used respectively to etch AZO thin films. The solution concentration and
etching time is changed so as to obtain nano scale columnar structure. From the result, it
was found that under the same etching time and as the increase in the concentration of
the etching solution, the reaction of AZO will be accelerated and the formation of nano
columnar structure will become more difficult. From XRD analysis, it was found that
IV
under low concentration etching of AZO thin films, the etching time has positive
relationship with the gap among nano columns. Since the resistivity after etching is
raised by several orders of magnitude, in order to have at the same time low resistivity
and high transmission, this study associates the etched nano columnar structure and ITO
transparent conductive glass, it is hoped that through the change of the structure, highest
transmission and lower reflectance is obtained. From the experimental result, it can be
seen that when RF power of 500 W and Ar flow rate of 60 sccm are used to sputter AZO
thin film, we can make the resistivity of the thin films reach 1.1×10-3 Ω·cm; when RF
power of 400 W and argon flow rate of 60 sccm are used to deposit AZO thin films of
thickness of 2000 Å, the transmission is 94.44 %. When 2.5 % KOH is used to etch
AZO thin film for 120 seconds, the transmission can be raised to 95.2 % but the
resistivity is increased by 44 times. When AZO is deposited on 2500 Å ITO glass
substrate and etching is performed, AZO/ITO/Glass structure can lead to transmission of
87.94 %; structure of Textured of AZO/ITO/Glass/Textured of AZO can lead to
transmission of 84.46 %; moreover, structure of Textured of AZO/ITO/Glass can lead to
lowest reflectance of 9.57 %. And the resistivities of the transparent and conductive thin
films of these structures are similar to that of ITO, that is, about 6 Ω/□.
目錄
中 文 摘 要..................................................................................................................... I
ABSTRACT ................................................................................................................... III
誌謝 ...............................................................................................................................V
目錄 .............................................................................................................................. VI
表目錄............................................................................................................................ IX
圖目錄..............................................................................................................................X
符號說明..................................................................................................................... XIV
符號說明..................................................................................................................... XIV
第一章 緒論.............................................................................................................. 1
1.1 前言.................................................................................................................. 1
1.2 主要應用及其市場資訊.................................................................................. 3
1.3 文獻回顧.......................................................................................................... 8
1.4 研究動機.......................................................................................................... 9
第二章 實驗與量測原理........................................................................................ 22
2.1 氧化鋅鋁之晶體結構及特性........................................................................ 22
2.2 濺鍍原理........................................................................................................ 23
2.3 薄膜的沉積理論............................................................................................ 26
2.4 濕式蝕刻相關原理........................................................................................ 28
2.5 表面輪廓量測................................................................................................ 28
2.6 電性量測系統................................................................................................ 29
2.6.1 四點量測法................................................................................................ 29
2.6.2 C-V 量測.................................................................................................... 29
2.6.3 場發射量測................................................................................................ 30
2.7 電子顯微鏡.................................................................................................... 31
2.8 UV-Vis-NIR 分光光譜儀............................................................................... 31
2.9 X 光繞射儀.................................................................................................... 32
2.10 能量散佈光譜儀........................................................................................ 32
第三章 實驗步驟.................................................................................................... 46
3.1 實驗流程圖.................................................................................................... 46
3.2 實驗材料........................................................................................................ 47
3.3 製程步驟........................................................................................................ 47
3.3.1 試片清洗.................................................................................................... 47
3.3.2 製作AZO 薄膜.......................................................................................... 48
3.3.3 溼式蝕刻AZO 薄膜.................................................................................. 50
3.4 檢測及分析.................................................................................................... 50
3.4.1 膜厚分析.................................................................................................... 50
3.4.2 電性分析.................................................................................................... 50
3.4.3 光學分析.................................................................................................... 51
3.4.4 顯微分析.................................................................................................... 51
3.4.5 晶相分析.................................................................................................... 52
第四章 結果與討論................................................................................................ 59
4.1 射頻磁控濺鍍沉積AZO 薄膜...................................................................... 59
4.1.1 改變射頻功率濺鍍AZO 之沉積速率...................................................... 59
4.1.2 改變射頻功率濺鍍AZO 之電性特性...................................................... 59
4.1.3 改變射頻功率濺鍍AZO 之光學特性...................................................... 60
4.2 溼式蝕刻AZO 薄膜...................................................................................... 60
4.2.1 以HCl 蝕刻AZO 薄膜............................................................................. 60
4.2.1.1 顯微結構分析.................................................................................... 60
4.2.1.2 電性量測分析.................................................................................... 61
4.2.2 以KOH 蝕刻AZO 薄膜........................................................................... 62
4.3.2.1 顯微結構分析.................................................................................... 62
4.3.2.2 電性量測分析.................................................................................... 62
4.3.2.3 光學量測分析.................................................................................... 63
4.3.3 以KOH 蝕刻在SiO2 上之AZO 薄膜...................................................... 63
4.3.3.1 顯微結構分析.................................................................................... 63
4.3.3.2 電性量測分析.................................................................................... 64
4.3.3.3 晶相分析............................................................................................ 64
4.4 在ITO 玻璃上沉積AZO 薄膜及其特性..................................................... 64
第五章 結論............................................................................................................ 92
第六章 未來工作.................................................................................................... 93
參考文獻........................................................................................................................ 95
表目錄
表1.1 氧化鋅添加各種成份之電阻率[13] ............................................................. 12
表1.2 主要透明導電薄膜之優缺點比較................................................................ 12
表1.3 各類觸控面板之優缺點比較........................................................................ 18
表2.1 蒸鍍與濺鍍之比較........................................................................................ 36
表2.2 乾式蝕刻與濕式蝕刻之比較........................................................................ 41
表3.1 磁控濺鍍AZO 之參數.................................................................................. 56
表3.2 電化學蝕刻之參數........................................................................................ 56
表3.3 光學量測之主要參數.................................................................................... 57
表4.1 操作電壓與蝕刻時間之穿透度整理............................................................ 82
表4.2 操作電壓與蝕刻時間之吸收度整理............................................................ 82
表4.3 各種構造之導電薄膜之光學參數................................................................ 91
圖目錄
圖1.11972-2004 年間透明導電氧化物掺雜後之氧化銦 (△)、氧化錫(□)及氧化鋅(●)之電阻率趨勢[12]。................................................................................................11
圖1.2 薄膜太陽能電池主要構造圖........................................................................ 13
圖1.3 2009 年全球太陽能市場供給過剩情況(資料來源:Lux Research) .......... 13
圖1.4 液晶顯示器的架構示意圖............................................................................ 14
圖1.5 大尺寸(>10 ”)面板出貨量全球市佔率 (資料來源:DisplaySearch) ........ 14
圖1.6 全球觸控面板模組營收預估 (來源:iSuppli,科技政策研究與資訊中心—科技產業資訊室整理)................................................................................................... 15
圖1.7 電阻式觸控面板之構造與四線式之線路設計[35] ..................................... 16
圖1.8 電容式觸控面板之構造與觸碰示意圖[35] ................................................. 17
圖1.9 音波式觸控面板之構造圖[36] ..................................................................... 17
圖1.10 紅外線式觸控面板之構造圖[36] ............................................................. 18
圖1.11 有機發光二極體主要架構示意圖............................................................ 19
圖1.12 2006-2013 年全球有機發光二極體面板出貨金額及預測營收趨勢圖 (資料來源:DisplaySearch) ............................................................................................... 19
圖1.13 以脈衝雷射沉積技術改變基板溫度沉積厚度40 nm 之AZO 薄膜之(a)電性分析與(b)XRD 晶相分析[37] ............................................................................... 20
圖1.14 改變基板溫度下之AZO 薄膜的載子濃度與遷移率[38] ....................... 21
圖1.15 在不同氫氣流量下沉AZO 薄膜之X-ray 繞射圖[39] ............................ 21
圖2.1 氧化鋁之纖鋅礦(Hexagonal wurtzite)晶體結構[45] ................................... 34
圖2.2 氧化鋅掺雜0 到8 wt.%鋁之電阻率、載子濃度及霍爾遷移率[42] ......... 35
圖2.3 自由電子碰撞原子所產生的離子化過程.................................................... 37
圖2.4 自由電子撞擊到原子產生的激發與鬆弛過程............................................ 37
圖2.5 自由電子撞擊分子所產生的分解過程........................................................ 38
圖2.6 直流濺鍍沉積薄膜示意圖............................................................................ 38
圖2.7 射頻濺鍍基本構造圖.................................................................................... 39
圖2.8 薄膜成長機制示意圖[43] ............................................................................. 39
圖2.9 基板溫度與製程壓力對於濺鍍沉積薄膜結構的模型[44] ......................... 40
圖2.10 表面輪廓量測之基本構造........................................................................ 42
圖2.11 四點量測系統示意圖................................................................................ 42
圖2.12 平行板電容器構造.................................................................................... 43
圖2.13 場發射原理示意圖.................................................................................... 43
圖2.14 UV-Vis-NIR 分光光譜儀之構造............................................................... 44
圖2.15 X 光繞射原理............................................................................................ 44
圖2.16 能量散佈光譜儀之示意圖........................................................................ 45
圖3.1 磁控濺鍍機.................................................................................................... 53
圖3.2 電化學蝕刻設備............................................................................................ 54
圖3.3 表面輪廓量測儀............................................................................................ 54
圖3.4 四點探針........................................................................................................ 55
圖3.5 UV-VIS-NIR 分光光譜儀.............................................................................. 55
圖3.6 場發射掃描式電子顯微鏡............................................................................ 57
圖3.7 X 光繞射儀設備圖........................................................................................ 58
圖4.1 在氬氣流量30 sccm 及60 sccm 環境下以不同功率濺鍍AZO 薄膜之沉積速率 ........................................................................................................................ 66
圖4.2 以氬氣流量30 sccm 改變射頻功率濺鍍厚度2000 Å 之AZO 薄膜之電阻率........................................................................................................................66
圖4.3 以氬氣流量60 sccm 改變射頻功率濺鍍厚度2000 Å 之AZO 薄膜之電阻率........................................................................................................................67
圖4.4 以氬氣流量30 sccm 改變射頻功率濺鍍厚度2000 Å 之AZO 薄膜之穿透度........................................................................................................................67
圖4.5 以氬氣流量60 sccm 改變射頻功率濺鍍厚度2000 Å 之AZO 薄膜之穿透度........................................................................................................................68
圖4.6 以濃度0.1 % HCl 蝕刻AZO 薄膜(a)60 秒、(b)120 秒及(c)240 秒之SEM.........................................................................................................................69
圖4.7 以濃度(a) 0.5 % 及(b) 1 % 之HCl 蝕刻AZO 薄膜60 秒之SEM ........... 70
圖4.8 改變HCl 濃度進行蝕刻AZO 之蝕刻時間與電性之變化圖..................... 70
圖4.9 以電壓0V 電化學蝕刻AZO 薄膜之SEM,0 秒之(a)上視圖及(b)截面側視
圖、60 秒之(c)上視圖及(d)截面側視圖、(e)120 秒及(f)180 秒時的上視圖............ 71
圖4.10 以電壓10V 電化學蝕刻AZO 薄膜之SEM,0 秒之(a)上視圖與(b)截面側視圖、60 秒之(c)上視圖與(d)截面側視圖、(e)120 秒及(f)180 秒之上視圖........ 72
圖4.11 以電壓20V 電化學蝕刻AZO 薄膜之SEM,0 秒之(a)上視圖與(b)截面側視圖、60 秒之(c)上視圖與(d)截面側視圖、(e)120 秒之上視圖........................... 73
圖4.12 以電壓30V 電化學蝕刻AZO 薄膜之SEM (a)0 秒、(b)120 秒、(c)180秒 .................................................................................................................... 74
圖4.13 以電壓50V 電化學蝕刻AZO 薄膜之SEM,0 秒之(a)上視圖與(b)截面側視圖、60 秒之(c)上視圖與(d)截面側視圖、(e)120 秒及(f)180 秒之上視圖........ 75
圖4.14 以電壓70V 電化學蝕刻AZO 薄膜之SEM,0 秒之(a)上視圖與(b)截面側視圖、60 秒之(c)上視圖與(d)截面側視圖、(e)120 秒及(f)180 秒之上視圖........ 76
圖4.15 以電壓10V 電化學蝕刻AZO 薄膜之SEM,0 秒之(a)上視圖與(b)截面側視圖、60 秒之(c)上視圖與(d)截面側視圖、(e)120 秒之上視圖........................... 77
圖4.16 隨不同蝕刻時間之片電阻與操作電壓變化圖........................................ 78
圖4.17 電壓0V 之電化學蝕刻AZO 之光學特性............................................... 78
圖4.18 電壓10V 之電化學蝕刻AZO 之光學特性............................................. 79
圖4.19 電壓20V 之電化學蝕刻AZO 之光學特性............................................. 79
圖4.20 電壓30V 之電化學蝕刻AZO 之光學特性............................................. 80
圖4.21 電壓50V 之電化學蝕刻AZO 之光學特性............................................. 80
圖4.22 電壓70V 之電化學蝕刻AZO 之光學特性............................................. 81
圖4.23 電壓90V 之電化學蝕刻AZO 之光學特性............................................. 81
圖4.24 厚度6000 Å 之AZO 薄膜在蝕刻時間(a)2 min、(b)3 min、(c)4 min、(d)6 min、(e)7 min 及(f)8 min 之SEM................................................................................ 83
圖4.25 不同厚度之AZO 薄膜在不同蝕刻時間的片電阻比.............................. 84
圖4.26 厚度2000 Å 之AZO 薄膜在不同蝕刻時間之XRD............................... 84
圖4.27 厚度4000 Å 之AZO 薄膜在不同蝕刻時間之XRD............................... 85
圖4.28 厚度6000 Å 之AZO 薄膜在不同蝕刻時間之XRD............................... 85
圖4.29 在ITO 玻璃上沉積AZO 薄膜之示意圖................................................. 86
圖4.30 G/I 系列單面沉積AZO 薄膜之穿透度.................................................... 86
圖4.31 G/I 系列雙面沉積AZO 薄膜之穿透度.................................................... 87
圖4.32 I/G 系列單面沉積AZO 薄膜之穿透度.................................................... 87
圖4.33 I/G 系列雙面沉積AZO 薄膜之穿透度.................................................... 88
圖4.34 G/I 系列單面沉積AZO 薄膜之反射率.................................................... 88
圖4.35 G/I 系列雙面沉積AZO 薄膜之反射率.................................................... 89
圖4.36 I/G 系列單面沉積AZO 薄膜之反射率.................................................... 89
圖4.37 I/G 系列雙面沉積AZO 薄膜之反射率.................................................... 90
[1] A. W. Ott, R. P. H. Chang, 1998, “Atomic layer- controlled growth of transparent conducting ZnO on plastic substrates”, Materials Chemistry and Physics, Vol. 58, Issue 2, pp. 132-138
[2] Y. C. Lin, M. Z. Chen, C. C. Kuo, W. T. Yen, 2009, “Electrical and optical properties of ZnO:Al film prepared on polyethersulfone substrate by RF magnetron sputtering”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 337, Issue 1-3, pp. 53-56 [3] D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei, C. Sun, 2005, “An anode with aluminum doped on zinc oxide thin films for organic light emitting devices”, Physics Letters A, Vol. 346, Issues 1-3, pp. 148-152
[4] J. Joo, D. Lee, M. Yoo, S. Jeon, 2009, “ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells”, Sensors and Actuators B: Chemical, Vol. 138, Issue 2, pp. 485-490
[5] Y. Gui, S. Li, J. Xu, C. Li, 2008, “Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature”, Microelectronics Journal, Vol. 39, Issue 9, pp. 1120-1125
[6] C. P. Liu, G. R. Jeng, 2008, “Properties of aluminum doped zinc oxide materials and sputtering thin films”, Journal of Alloys and Compounds, Vol.468, Issue 1-2, pp. 343-349
[7] W. J. Jeong, S. K. Kim, G. C. Park, 2005, “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell”, Thin Solid Films, Vol. 506-507, pp. 180-183
[8] S. Park, S. J. Tark, J. S. Lee, H. Lim, D. Kim, 2008, “Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode”, Solar Energy Materials & Solar Cells, In Press
[9] W. Beyer, J. Hüpkes, H. Stiebig, 2007, “Transparent conducting oxide films for thin film silicon photovoltaics”, Thin Solid Films, Vol. 516, Issues 2-4, pp. 147-154
[10] V. Sittinger, F. Ruske, W. Werner, B. Szyszka, B. Rech, J. Hu¨pkes,G. Scho¨pe, H. Stiebig, 2005, “ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells”, Thin Solid Films, Vol. 496, Issue 1, pp. 16-25
[11] K. Badeker, 1907, Annalen der Physik, Vol.22, pp. 749
[12] T. Minami, 2005, “Transparent conducting oxide semiconductors for transparent electrodes”, Semiconductor Science and Technology, Vol. 20, Issue 4, pp. S35-S44
[13] 内海健太郎, 渋田見哲夫, 2007, “透明導電膜用ターゲットの最新動向”, Tosoh Research & Technology Review, Vol. 51, pp. 63-68
[14] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, H. Morkoç, 2005, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, Vol. 98, Issue 4, pp. 041301
[15] Y. R. Ryua, T. S. Lee, H. W. White, 2003, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Applied Physics Letters, Vol. 83, Issue 1, pp. 87-89
[16] H. Nanto, T. Minami, S. Shooji, and S. Takata, 1984, “Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications”, Journal of Applied Physics, Vol. 55, Issue 4, pp. 1029-1034
[17] E. Neshataeva1, T. Kuemmell, A. Ebbers, G. Bacher, 2009, “Low operation voltage UV-light emitting device based on ZnO nanoparticles”, Proceedings of SPIE, Vol. 7217, pp.721707
[18] J. J. Berry, D. S. Ginley, P. E. Burrows, 2008, “Organic light emitting diodes using a Ga:ZnO anode”, Applied Physics Letters, Vol. 92, Issue 19, pp. 193304
[19] J. W. Kang, W. I. Jeong, J. J. Kim, H. K. Kim, D. G. Kim, G. H. Lee, 2007, “High-Performance Flexible Organic Light-Emitting Diodes Using Amorphous Indium Zinc Oxide Anode”, Electrochemical and Solid-State Letters, Vol. 10, Issue 6, pp. J75-J78
[20] A.M Peiró, P. Ravirajan, K. Govender, D.S. Boyle, P.O’Brien, D.D.C. Bradley, J. Nelson and J.R. Durrant, 2005, “The effect of zinc oxide nanostructure on the performance of hybrid polymer/zinc oxide solar cells”, Proceedings of SPIE, Vol. 5938, pp.593819
[21] K. Schulze, B. Maennig, K. Leo, Y. Tomita, C. May, J. Hüpkes, E. Brier, E. Reinold, P. Bäuerle, 2007, “Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes”, Applied Physics Letters, Vol. 91, Issue 7, pp. 073521
[22] M. F. Hossain, S. Biswas, M. Shahjahan, and T. Takahashi, 2009, “Study of sol-gel derived porous ZnO photoelectrode for the application of dye-sensitized solar cells”, Journal of Vacuum Science and Technology A, Vol.27, Issue 4, pp. 1047-1051
[23] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K. Y. Jen, 2008, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer”, Applied Physics Letters, Vol. 92, Issue 25, pp. 253301
[24] G. G. Valle, P. Hammer, S. H. Pulcinelli, C. V. Santilli, 2004, “Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating”, Journal of the European Ceramic Society, Vol. 24, Issue 6, pp. 1009-1013
[25] R. B. H. Tahar, 2005, “Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol–gel process”, Journal of the European Ceramic Society, Vol. 25, Issue 14, pp. 3301-3306
[26] R. K. Shukla, A. Srivastava, A. Srivastava, K. C. Dubey, 2006, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition”, Journal of Crystal Growth, Vol. 294, Issue 2, pp.427-431
[27] S. J. Henley, M. N. R. Ashfold, D. Cherns, 2004, “The growth of transparent conducting ZnO films by pulsed laser ablation”, Surface and Coatings Technology, Vol. 177-178, pp. 271.276
[28] M. E. Fragala, G. Malandrino, 2009, “Characterization of ZnO and ZnO:Al films deposited by MOCVD on oriented and amorphous substrates”, Microelectronics Journal, Vol. 40, Issue 2, pp. 381-384
[29] I. Volintiru, M. Creatore, B. J. Kniknie, C. I. M. A. Spee, M. C. M. van de Sanden, 2007, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metal organic chemical vapor deposition”, Journal of Applied Physics, Vol. 102, Issue 4, pp. 043709
[30] Z. C. Jin, I. Hamberg, G. C. Grangvist, 1988, “Optical properties of sputterdeposited ZnO:Al thin films”, Journal of Applied Physics, Vol. 64, Issue 10, pp. 5117-5131
[31] T. F. Chung, L. B. Luo, Z. B. He, Y. H. Leung, I. Shafiq, Z. Q. Yao, S. T. Lee, 2007, “Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application”, Applied Physics Letters, Vol. 91, Issue 23, pp. 233112
[32] X. B. Zhang, Z. L. Pei, J. Gong, C. Sun, 2007, “Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature”, Journal of Applied Physics, Vol. 101, Issue 1, pp. 014910
[33] S. H. Chen, C. F. Yu, Y. S. Lin, W. J. Xie, T. W. Hsu, D. P. Tsai, 2008, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy”, Journal of Applied Physics, Vol. 104, Issue 11, pp. 114314
[34] A. Tiburcio-Silver, J. C. Joubert, M. Labeau, 1994, “Optical band-gap shrinkage in highly transparent and conducting ZnO thin films deposited by the Pyrosol process”, Journal of Applied Physics, Vol. 76, Issue 3, pp. 1992-1994
[28] 正達國際光電股份有限公司
[29] 坤巨資訊股份有限公司
[37] A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, M. Okuda, 2008, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition”, Thin Solid Films, Vol. 517, Issue 4, pp. 1478-1481
[38] E. G. Fu, D. M. Zhuang, G. Zhang, W. F. Yang, M. Zhao, 2003, “Substrate temperature dependence of the properties of ZAO thin films deposited by magnetron sputtering”, Applied Surface Science, Vol. 217, Issue 1-4, pp. 88-94
[39] W. F. Liu, G. T. Du, Y. F. Sun, J. M. Bian, Y. Cheng, T. P. Yang, Y. C. Chang, Y. B. Xu, 2007, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low temperature”, Applied Surface Science, Vol. 253, Issue 6, pp. 2999-3003
[40] L. Börnstein, New Series Vol. III/41B, “II-VI and I-VI Compounds; Semimagnetic Compounds”, ed. by U.Rössler (Springer, Berlin, Heidelberg 1999)
[41] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, 2005, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, Vol. 98, Issue 4, pp. 041301
[42] Y. Liu, J. Lian, 2007, “Optical and electrical properties of aluminum- doped ZnO thin films grown by pulsed laser deposition”, Applied Surface Science, Vol. 253, Issue 7, pp. 3727-3730
[43] B. Chapman, 1980, Glow Discharge Processes, John Wiley & Sons New York
[44] J. A. Thornton, 1974, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, The Journal of Vacuum Science and Technology, Vol.11, Issue 4, pp. 666-670
[45] http://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top