(3.236.231.61) 您好!臺灣時間:2021/05/11 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:游富安
研究生(外文):Fu-An Yuo
論文名稱:關節軟骨修補材料之動態機械性質研究
論文名稱(外文):Dynamic Response of Cartilage Repair Hydrogel Material
指導教授:蔡立仁
指導教授(外文):Liren Tsai
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:退化性關節炎水膠膠原蛋白
外文關鍵詞:SHPB、KOLSKYhydrogelsdegenerative arthritis
相關次數:
  • 被引用被引用:4
  • 點閱點閱:868
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
隨著社會的高齡化,退化性關節炎的問題也就更趨明顯且重要了,人的關節一直在摩擦,所以難免會有損耗,尤其是膝關節,除了平時要支撐人體的重量,運動時所受的衝擊量更是劇烈。一般對於關節炎的治療不外乎是吃藥和打針,但若是太嚴重的情形,則需要更換人工關節,膝蓋長期處於摩擦狀態,不論是靜態或是動態都會受到磨損,人體站立時膝蓋會受到靜態的負荷,運動時則會受到動態的負載,本研究將針對磨損最劇烈的動態負載來研究。
水膠是一種多孔性高分子材料,有極佳的親水性與生物相容性,它已經有被利用在生醫材料上了,像是隱形眼鏡,芳香劑,本次研究所使用的水膠pH值為6。使用SHPB技術來測試水膠的機械特性,藉由水膠的應變率,體積比例跟壓力曲線間的關係圖來描述水膠在動態變形下的壓縮能力,進而應用在關節的修補上。
在本研究中,將針對不同的AAC濃度3.37%、6.75%與13.5%,測試在未膨潤、膨潤模擬體液與膨潤模擬體液升溫至37℃(仿體溫)等三種狀況下水膠的動態機械性質,評估應用在人體膝蓋軟骨修補的可行性。利用SHPB來測試軟材料,會遭遇到許多困難,試件的應力平衡、傳送訊號微弱與波的分散現象,經過測試後發現,未膨潤之水膠中,因為AAC的成分較多,以13.5%交聯濃度所表現出的機械性質最好,至少能承受8.2MPa的壓應力。人體在運動時所受到的壓應力約為10~20MPa,若是要應用在人體中,水膠會吸收到體液與體溫,實驗結果則是以6.75%交聯濃度的水膠所表現出的機械強度最佳,能承受13MPa的壓應力,可應用在膝蓋軟骨上的修補。若要再增加其機械強度,在未來的工作上期望能將AAC、Pluronic與膠原蛋白交聯在一起,增加緩衝能力提高機械性質。
Because the social have became more longer life, the questions of degenerative arthritis become more and more important, cartilage of human is always on friction, the damage is can not be avoided, especially is in depart of knee cartilage, it is must to accept weight of body in generally. When it is operated very nasty, either take medicine or be injected in generally, knee cartilage will be changed ,if it is more serious.
Not only because hydrogels are superabsorbent, it is also a bio-compatible material, It can absorb a lot of liquid(it is almost reach 10 times),it have already been used in bio-compatible material, for example, contact lens. In this research,pH value of hydrogels is 6,and it will use SHPB skill to describe mechanical properties of hydrogels by strain rate, volume rate-pressure curve ,and we wish it can to fix knee cartilage of human in the future.
In this study, the hydrogel are 3.37%、6.75% and 13.5% individually, and these hydrogels will be placed in dry、absorbed PBS and heat to 37℃ after absorbed PBS.
There are many challenges for using SHPB skill to measurement mechanical properties of soft material. Hydrogel of AAC13.5% have more stronger mechanical property in dry, and Hydrogel of AAC6.75% have more stronger mechanical property in heating to 37℃ after absorbed PBS condition. It can accept 13MPa stress at least , so it can apply to human for mechanical property. We like to ad Collagen to promote mechanical property of hydrogel in the future.
摘要 I
圖目錄 V
表目錄 VIII
符號說明 IX
第一章 緒論 1
1.1研究動機與目的 3
1.2 退化性關節炎 4
第二章 理論基礎 6
2.1 高應變率下的量測方法 6
2.2 SHPB基礎理論概述 9
2.2.1 SHPB的發展歷史 9
2.2.2 訊號求解 10
2.3 SHPB系統架構與組裝 16
2.3.1支架部份: 18
2.3.2桿材部份: 19
2.4 SHPB桿的對準與校正 23
2.4.1以面來對準: 24
2.4.2軸承座間距: 24
第三章 實驗方法 26
3.1 實驗流程 26
3.1.1 樣品加工與準備 27
3.2 實驗儀器與設備 36
3.3 波型調整(Pulse Shaper) 39
3.4資料的擷取與換算 44
3.4.1繪製應力-應變圖 44
3.4.2繪製體積應變率-壓力圖 47
第四章 結果與討論 49
4.1實驗結果說明 49
4.2交聯濃度3.37%水膠機械特性 53
4.3交聯濃度6.75%水膠機械特性 64
4.4交聯濃度13.5%水膠機械特性 76
第五章 總結 86
第六章 未來工作與展望 95
參考文獻 97
[1]http://calmodulin.xxking.com/touch.htm.
[2]Wang et al., 2007, ” Parametric analysis of the stress distribution on the articular cartilage and subchondral bone”, Bio-Medical Materials and Engineering, vol.17, pp.241-247.
[3]Morelli et al., 2003,” Alternative therapies for traditional disease states: osteoarthritis ”, American Family Physician, vol.67, pp.339-344.
[4]Jacob et al., 2002, “Autologous osteochondral grafting inthe knee. Indication, results, reflections ”, Clinical Orthopaedics & Rlated Rsearch , vol.401, pp.170-184.
[5]Tsuang et al., 2007,” The effect of dynamic compressive pressure on chondrocytes metabolism”, Arthritis Research & Therapy.
[6]Wichterle ,Lim ,1960, “Hydrophilic gels for biological use” Nature vol.185,pp.117-118.
[7]凌銘鴻,林鴻儒,”低摩擦及高強度水膠應用於修復關節軟骨之研發”,行政院國家科學委員會專題研究計畫。
[8]Buckwalter, Mankin ,1998, ”Articular cartilage: degeneration and osteoarthritis, repair,regeneration and transplantation”, AAOS Inst. Course, vol.47,pp. 487-504.
[9]蔡偉博, 2003,機械性壓縮對於關節軟骨組織工程的影響評,行政院國家科學委員會專題研究計畫。
[10]http://calmodulin.myweb.hinet.net/b04.htm
[11]http://tw.myblog.yahoo.com/bone-study/gallery
[12]Janne, 2003, ” Split hopkinson pressure bar technique for dynamic calibration of force tranceducers”, Metrology in the 3rd Millennium.
[13]Song, and Chen, 2004,” Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials”, Experimental Mechanics, vol.44, pp.300-312.
[14]Zhao, Gary, 1995, ”A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques”, Journal of Mechanics, vol.43, pp.1335-1348.
[15]Tsai, and Sun, 2002, ”Constitutive model for high strain rate response of polymeric composites”, Composites Science and Technology, vol.62, pp.1289-1297.
[16]Gary, and Zhao, 2000, ”Dynamic testing of fiber polymer matrix composite plates under in-plane compression”, Composites, vol.31, pp.835-840.
[17]Sia Nemat-Nasser, ”Introduction to high strain rate testing”, ASM Metals Handbook, vol.8, pp.939-959.
[18]http://www.thiot-ingenierie.com/thiottaylorus.htm.
[19]Hopkinson, 1914,” A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets”, Philos. Trans, vol. 213, pp. 437–456.
[20]Kolsky,1949,” An Investigation of the mechanical properties of materials at very high rates of loading”, Proc. Phys. Soc. , vol. 62, pp. 676–700.
[21]Harding et al., 1960, “Tensile testing of materials at impact rate of strain”, Journal of Mechanicals Engineering,vol.2,pp.88–96.
[22]Lee , 2003, Kim”Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique”, Nuclear Engineering and Design,pp.119-125.
[23]Lee, Kim., 2000,” Thickness effects on mechanical behavior of a composite material (1001P) and polycarbonate in split Hopkinson pressure bar technique”, Journal of Material. vol.19, pp.1805–1808.
[24]Zhang , Ramesh, 1998,” On the compressibility of a glass forming lubricant, experiments and molecular modeling”, Journal of Mechanics,vol.46,pp.1699-1722.
[25]Feng , Ramesh , 1993,” On the compressibility of elast-hyctro dynamic lubricants”, Journal of Tribology,vol155,pp.557-559.
[26]Sarafa et al., 2007,” Mechanical properties of soft human tissues under dynamic loading”, Journal of Biomechanics,vol.40,pp.1960–1967.
[27]Song et al., 2005,” Confinement effects on the dynamic compressive properties of an epoxy syntactic foam”, Composite Structures ,vol67,pp.279–287.
[28]簡單揚,工程數學上課講義書,台中龍門研究所。
[29]林奇鋒,2002,”304L不銹鋼在未預變形及預變形條件下之高速撞擊特性與微觀組織的比較研究”,國立成功大學機械工程學系博士論文。
[30]Liu et al., 2008,” Dynamic compressive strength of Zn–22Al foams” Journal of Alloys and Compounds.
[31]Zhao et al., 2003,” An experimental study of the deformation rate sensitivity of PM aluminium foams”, Journal of Banhart,pp.463-468.
[32]Song et al., 2009,” Impact compressive response of dry sand”, Mechanics of Materials, vol.41,pp. 777–785.
[33]Li, Ma, 2009,” Experimental study of stress wave propagation across a filled rock joint”, Journal of Rock Mechanics & Mining Sciences,vol.46,pp. 471–478.
[34]Ong et al., 2004,” Dynamic materials testing and modeling of solder interconnects”, Electronic Components and Technology Conference,pp.1075-1079.
[35]Chen et al., 1999,” A split hopkinson bar technique for low-impedance materials”, Journal of Experimental Mechanics,pp.81-85.
[36]Song ,Chen, 2005,“Split hopkinson pressure bar techniques for characterizing soft material”, Journal of Solids and Structures,vol.2,pp.113-152
[37]Song , Chen, 2004,” Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials”, Society for Experimental Mechanics,pp.300-312.
[38]Sligtenhorst et al., 2006,” High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus”, Journal of Biomechanics,pp1852-1858.
[39]Songa et al, 2007,” Dynamic and quasi-static compressive response of porcine muscle”, Journal of Biomechanics,pp.2999-3005.
[40]Seidel , Malmonge,2000, “Synthesis of PolyHEMA Hydrogels for Using as biomaterials bulk and solution radical-initiated polymerization techniques”, Materials Research,pp.79-83.
[41]Pervin, Chen, 2009,” Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression”, Journal of Biomechanics.
[42]Feng, Ramesh,1990, "The dynamic compressibility of an elastohydrodynamic Lubricant," Johns Hopkins University Technical Report No. DIL-9003.
[43]Chen,et al,1998,” A split hopkinson bar technique forlow-impedance materials”, Experimental Mechanics,vol.39,pp.81-85.
[44]Gong et al.,1990,” Dispersion investigation in thesplit hopkinson pressure bar”, Journal of Engineering Materials and Technology,vol,112,pp.309-314.
[45]Jung , Park ,2005,” Longitudinal wave decomposition in time domain with single point axial strain and a cceleration measurements”, APVC Proceedings515-518.
[46]Zhao, et al.,1997,” On Tthe use of a viscoelastic split Hopkinson pressure bar”, Journal of Impact Engng ,vol.19,pp.319-330.
[47]Zhifang, Ruoze,2008,” Temperature in high temperature SHPB experiments”, Transactions of Tianjin University ,vol.14,pp.536-539.
[48]王兆麟, 2001”關節受連續性衝擊時之動態測試分析以及以避震觀點評估與設計膝關節輔具與護具”,行政院國家科學委員會專題研究計畫成果報告.
[49] Johnson et al., 2002,” Mechanical properties of a pH sensitive Hydrogel”, SEM Annual Conference Proceedings.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔