(34.229.64.28) 您好!臺灣時間:2021/05/06 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅于凡
研究生(外文):Yu-Fan Lo
論文名稱:分子動力學模擬材料缺陷對於奈米尺度金屬切削之影響
論文名稱(外文):Molecular dynamics simulation on effect of material defect in nano-scale cutting
指導教授:林昭文林昭文引用關係
指導教授(外文):Jau-Wen Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:分子動力學材料缺陷摩潤
外文關鍵詞:Molecular dynamics simulationMaterial defectFriction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本文將運用分子動力學與量子力學的交叉運用,來模擬並比較完美晶體與缺陷晶體在切削行為下的差異性,並選用應力分佈與摩擦力做為分析;由於摩擦力可以表現材料接觸面性質,而應力分佈可以在模擬過程中看出應力集中區域,適合用來說明由缺陷所帶來的性質變化。透過量子力學計算晶格常數與彈性係數張量,設定能量、最大應力與最大位移的收斂區間,使單位晶格最佳化;其次,建立模擬系統,再分別加入差排、旋轉晶格與滲入雜質的缺陷條件,來改變材料的性質;最後,使用分子動力學與自行撰寫之程式進行切削行為的模擬與應力分佈及摩擦力的分析。
In this paper, we used molecular dynamics simulation to carry out the simulation experiment of cutting perfect and imperfect crystals and compared the differences between the two. Stress distribution and friction are chosen to analyze in this article. Stress distribution is suitable to explain the nature change brought by defects, so in the simulation process, the concentration area of stress can be seen, and friction can express the nature of material contact surface.
First of all, before the start of simulation, we will use quantum mechanics to calculate lattice constant and elastic coefficient tensor to determine initial unit lattice, energy setting, maximum stress, and the convergence zone of maximum displacement of the follow-up simulations to optimize unit lattice. Second, add presumable simulation parameters to establish simulation system, and then respectively add dislocation, spin lattice defects, and the imperfect conditions that impurities infiltrate to change the nature of the material; and finally, we will use molecular dynamics to carry out cutting simulation, and at the same time use the programs written by myself to analyze stress distribution and friction.
In the simulation of dislocation defects, adding dislocation to the internal part of the material will make the stress in the material increase, and at the same time, when using cutting tools to cut dislocation lines, the resistance stress on the tools will increase. In the simulation of rotating lattice, through rotating the lattice in different angles, the densest stacked side of the material will be piled up in different angles. When the material is formed dislocation because of accumulation, the resistance on the cutting tools will magnificently increase. In the simulation of impurity infiltration, through the infiltration of carbon, the effect of enhancing hardness of materials is carried out to make the resistance on cutting tools increase.
中文摘要------------------------------------------------------------------------------------ i
英文摘要------------------------------------------------------------------------------------ ii
銘謝------------------------------------------------------------------------------------------ iii
目錄------------------------------------------------------------------------------------------ iv
表目錄--------------------------------------------------------------------------------------- vi
圖目錄--------------------------------------------------------------------------------------- vii
符號說明------------------------------------------------------------------------------------ x
一、緒論------------------------------------------------------------------------------------- 1
1.1、文獻回顧------------------------------------------------------------------------- 1
1.2、研究目的與動機---------------------------------------------------------------- 4
1.3、本文架構------------------------------------------------------------------------- 5
二、分子動力學簡介---------------------------------------------------------------------- 6
2.1、運動方程式---------------------------------------------------------------------- 6
2.2、Gear五階預測修正算法------------------------------------------------------- 6
2.3、Verlet演算法-------------------------------------------------------------------- 8
2.4、Leapfrog演算法---------------------------------------------------------------- 9
2.5、週期邊界條件------------------------------------------------------------------- 10
三、量子力學理論說明------------------------------------------------------------------- 12
3.1、波函數(Wave Function)------------------------------------------------------- 12
3.2、薛丁格方程式(Schroedinger Equation)------------------------------------ 12
3.2.1、多粒子量子問題------------------------------------------------------- 13
3.3、泛密度函數理論(Density Functional Theory:DFT)---------------- 14
3.4、Kohn-Sham方法---------------------------------------------------------------- 15
3.4.1、動能泛函與Kohn-Sham軌域---------------------------------------- 15
3.4.2、局域密度近似(Local Density Approximation:LDA)------------ 16
3.4.3、Kohn-Sham方程式----------------------------------------------------- 17
3.5、贗勢(Pseudopotential)及平面波基底--------------------------------------- 18
3.5.1、贗勢---------------------------------------------------------------------- 19
3.6、週期性邊界條件---------------------------------------------------------------- 20
3.7、應力計算------------------------------------------------------------------------- 22
四、初始條件與參數設定---------------------------------------------------------------- 25
4.1、模擬流程------------------------------------------------------------------------- 25
4.2、建立初始晶格------------------------------------------------------------------- 27
4.3、建立初始條件與模型---------------------------------------------------------- 28
五、模擬結果與討論--------------------------------------------------------------------- 33
5.1、差排缺陷對α-Fe的影響---------------------------------------------------- 33
5.2、晶格旋轉對γ-Fe的影響---------------------------------------------------- 44
5.3、雜質對系統的影響------------------------------------------------------------- 58
六、總結------------------------------------------------------------------------------------- 80
6.1、結論------------------------------------------------------------------------------- 80
6.2、未來展望------------------------------------------------------------------------- 81
附錄------------------------------------------------------------------------------------------ 82
參考文獻------------------------------------------------------------------------------------ 83
作者介紹------------------------------------------------------------------------------------ 87
[1]Y. Morita, T. Onodera, A. Suzuki, R. Sahnoun,M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou,H. Takaba, M. Kubo, C. A. D. Carpio, T. Shin-yoshi,N. Nishino, A. Suzuki, A. Miyamoto, 2008, “Development of a new molecular dynamics method for tribochemical reaction and its application to formation dynamics of MoS2 tribofilm,” Applied Surface Science, Vol. 254, pp. 7618-7621.
[2]J. E. Hammerberg, B. L. Holian, T. C. Germann, R. Ravelo, 2004, “Nonequilibrium molecular dynamics simulations of metallic friction at Ta-Al and Cu-Ag interfaces,” Metallurgical and Materials Transactions, Vol. A35, No. 9, pp. 2741-2745.
[3]V. I. Ivashchenko, P. E. A. Turchi, 2006, “Atomic-scale sliding friction of amorphous and nanostructured SiC and diamond surfaces,” Tribologists and Lubrication Engineers, Vol. 49, pp. 1-5.
[4]N. Omote, M. Kaneko, 2008, “Velocity-dependent threshold behavior of wearless nano-friction,” Computational Materials Science.
[5]K. Matsushita, H. Matsukawa, N. Sasaki, 2005, “Atomic scale friction between clean graphite surfaces,” Solid State Communications, Vol. 136, pp. 51-55.
[6]K. Maekawa, A. Itoh, 1995, “Friction and tool wear in nano-scale - a molecular dynamics approach,” Wear, pp. 115-122.
[7]R. Komanduri, N. Chandrasekaran, 2000, “Molecular dynamics simulation of atomic-scale friction,” Physical Review, Vol. B61, No. 20, pp. 61-73.
[8]A. Noreyan, J. G. Amarb, 2008, “Molecular dynamics simulations of nanoscratching of 3C SiC,” Wear, Vol. 265, pp. 956-962.
[9]M. Cheng, Y. Lu, 2006, “Friction between carbon nanotube and graphite,” Materials Science and Engineering, pp. 169-172.
[10]Y. Kogure, T. Kosugi, T. Nozaki, 2007, “Simulation of dislocation-phonon interaction in metals,” Conference Series, Vol. 92, pp.1-4.
[11]J. Changa, W. Cai, V. V. Bulatov, S. Yip, 2001, “Dislocation motion in BCC metals by molecular dynamics,” Materials Science and Engineering, Vol. A309, pp. 160-163.
[12]Haile, J., “Molecular dynamics simulation: elementary methods,” John Wiley & Sons, NY, 1992.
[13]P. Hohenberg, W. Kohn, 1964, “Inhomogeneous electron gas,” Physical Review, Vol. 136, No. 3B, pp. 864-971.
[14]L. J. Sham, W. Kohn, 1966, “One-particle properties of an inhomogeneous intercting electron gas,” Physical Review, Vol. 145, No. 2, pp. 561-567.
[15]W. Kohn, L. J. Sham, 1965, “Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, No. 4B, pp. 1133-1138.
[16]H. Sun, P. Ren, J. R. Fried, 1998, “The COMPASS forcefield: parameterization and validation for polyphosphazenes,” Comput. Theor. Polym. Sci., Vol. 8, pp. 229.
[17]A. P. Boresi, K. P. Chong, 2000, “Elasticity in engineering mechanics,” John Wiley, New York.
[18]J. W. Haile, 1992, “Molecular dynamics simulation”, John Wiley, New York.
[19]R. L. Hayes, G. Ho, M. Ortiz, E. A. Carter, 2006, “Prediction of dislocation nucleation during nanoindentation of Al3Mg by the orbital-free density functional theory local quasicontinuum method,” Philosophical Magazine, Vol. 86, No. 16, pp. 2343–2358.
[20]http://www.accelrys.com/references/castep/
[21]H. Sun, 1998, “COMPASS: An ab Initio forcefield optimized for condensed-phase applications - overview with details on alkane and benzene compounds,” J. Phys. Chem., Vol. 102, pp. 7338.
[22]D. Rigby, H. Sun, B. E. Eichinger, 1998, “Computer simulations of poly(ethylene oxides): forcefield, PVT diagram and cyclization behavior,” Polym. Int., Vol. 44, pp. 311-330.
[23]C. D. Wu, J. F. Lin, T. H. Fang, 2007, “Molecular dynamic simulation and characterization of self-assembled monolayer under sliding friction,” Computational Materials Science, Vol. 39, pp. 808-816.
[24]J.E. Davidson, S.L. Hinchley, S.G. Harris, A. Parkin, S. Parsons, P.A. Tasker, 2006, “Molecular dynamics simulations to aid the rational design of organic friction modifiers,” Molecular Graphics and Modelling, Vol. 25, pp. 495-506.
[25]P. T. Mikulski, J. A. Harrison, 2001, “Periodicities in the properties associated with the friction of model self-assembled monolayers,” Tribology Letters, Vol. 10, No. 1-2, pp. 29-35.
[26]H. Wang, Y. Z. Hu, T. Zhang, 2005, “Simulations on atomic-scale friction between self-assembled monolayers phononic energy dissipation,” Tribology International, Vol. 40, pp. 680-689.
[27]Y. Z. Hu, T. Zhang, T. B. Ma, H. Wang, 2006, “Molecular dynamics simulations on atomic friction between self-assembled monolayers commensurate and incommensurate sliding,” Computational Materials Science, Vol. 38, pp. 98-104.
[28]T. H. Fang, C. I. Weng, J. G. Chang, 2002, “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Materials Science and Engineering, Vol. A357, pp. 7-12.
[29]J. M. Zhang, H. Z. Yu, K. W. Xu, 2008, “Atomistic simulation of the self-diffusion in Mg (001) surface,” Cryst. Res. Technol., Vol. 42, No. 9, pp. 986-990.
[30]K. Nordlund, R. S. Averback, T. D. Rubia, 2002, “Effect of atomic bonding on defect production in collision,” Mat. Res. Soc., pp.1-7.
[31]M. J. Buehler, 2004, “Mechanical properties of twin lamella copper preliminary studies,” Mat. Res. Soc., No 62, pp.1-7.
[32]N. P. Bailey, J. P. Sethna, C. R. Myers, 2000, “Dislocation mobility in two-dimensional Lennard-Jones material,” Cond-mat., New York.
[33]L. Nurminen, F. Tavazza, D. P. Landau1, A. Kuronen, K. Kaski, 2007, “Simulation of islands and vacancy structures for SiGe-covered Si(001) using a hybrid MC-MD algorithm,” Conference Series, USA.
[34]C. E. Carlton, P. J. Ferreira, 2008, “Dislocation motion-induced strain in nanocrystalline materials overlooked considerations,” Materials Science and Engineering, Vol. 486, pp. 672-674.
[35]B. D. Wirth1, V. V. Bulatov, T. D. Rubia, 2002, “Dislocation-stacking fault tetrahedron interactions in Cu,” Engineering Materials and Technology, Vol.124, pp.329-334.
[36]K. Nishimura, R. Matsumoto, S. Taketomi, N. Miyazaki, 2008, “Molecular dynamics simulation of optimized shearing routes in single and polycrystalline aluminum,” ECCOMAS.
[37]X. Y. Fu, M. L. Falk, D.A. Rigney, 2004, “Sliding behavior of metallic glass Part II Computer simulations,” Wear, Vol. 250, pp. 420-430.
[38]Y. C. Chen, K. I. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, 2008, “Molecular dynamics nanoindentation simulation of an energetic material,” Applied Physics Letters, Vol. 93, pp.171908-171909.
[39]H. J. Lee, B. D. Wirth, 2009, “Molecular dynamics simulation of dislocation–void interactions in BCC Mo,” Nuclear Materials, Vol. 386-388, pp.115-118.
[40]D. Zahn, 2009, “Molecular dynamics simulation of optimized shearing routes in single and polycrystalline aluminum,” Computational Materials Science.
[41]P. Ebert, K. Urban, L. Aballe, C. H. Chen, K. Horn, G. Schwarz, J. Neugebauer, M. Scheffler, 2000, “Symmetric versus nonsymmetric structure of the phosphorus vacancy on InP(110),” Physical Review Letters, Vol. 84, No. 25, pp. 5816-5819.
[42]P. Selvam, H. Tsuboi, M. Koyama, M. Kubo, A. Miyamoto, 2005, “Tight-binding quantum chemical molecular dynamics method:a novel approach to the understanding and design of new materials and catalysts,” Catalysis Today, Vol. 100, pp. 11-25.
[43]K. Dev, E.G. Seebauer, 2004, “Vacancy charging on Si(111)-‘‘1×1’’ investigated by density functional theory,” Surface Science, Vol. 572, pp. 483-489.
[44]J. X. Ma, Y. Jia, Y. L. Song, E. J. Liang, L. K. Wu, F. Wang, X. C. Wang, X. Hu, 2004, “The geometric and electronic properties of the PbS, PbSe and PbTe (0 0 1) surfaces,” Surface Science, Vol. 551, pp. 91-98.
[45]H. J. Monkborst, J. D. Pack, 1976, “Special points for Brillouin-zone integrations,” Physical Review, Vol. 13, pp. 5188-5192.
[46]J. Goniakowski, J. M. Holender, L. N. Kantorovich, M. J. Gillan, 1996, “Influence of gradient corrections on the bulk and surface properties of TiO2 and SnO2,” Physical Review, Vol. 53, No. 3, pp. 957-960.
[47]J. T. Wang, L. Zhou, Y. Kawazoe, 1999, “Ab initio studies on the structural and magnetic properties of Fe/Cu superlattices,” Physical Review, Vol. 60, No. 5, pp. 3025-3028.
[48]E. Gerde, M. Marder, 1999, “Friction and fracture,” USA.
[49]D. Marx, J. Hutter, 2000, “Ab initio molecular dynamics: theory and implementation,” Neumann Institute for Computing.
[50]C. M. Mate, 1995, “Force microscopy studies of the molecular orlglns of friction and lubrication,” J. RES. DEVELOP., Vol. 39, No. 6, pp. 3025-3028.
[51]K. B. Jinesh, J.W. M. Frenken, 2006, “Capillary condensation in atomic scale friction: how water acts like a glue,” Physical Review, Vol. 96, pp. 166103-166106.
[52]M. Fago, R. L. Hayes, E. A. Carter, M. Ortiz, 2004, “Density-functional-theory-based local quasicontinuum method: prediction of dislocation nucleation,” Physical Review, Vol. 70, pp. 166102-166105.
[53]W. D. Callister, JR., 2008, “Materials science and engineering an introduction,” 陳文照等譯者, 高立圖書, 台北。
[54]曾謹言, 1991, “量子力學,” 凡異出版社, 新竹。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔