(3.236.122.9) 您好!臺灣時間:2021/05/12 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王聖文
研究生(外文):Sheng-Wen Wang
論文名稱:具時變不確定量多自由度機械系統之H∞振動控制
論文名稱(外文):Control of Multi-Degree-of-Freedom Mechanical Systems with Time-varying Perturbations
指導教授:鄭良安
指導教授(外文):Liang-An Zheng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:53
中文關鍵詞:多自由機械度系統H∞控制田口基因遺傳演算法時變參數擾動線性矩陣不等式
外文關鍵詞:Multi-Degree-of-Freedom Mechanical SystemsH∞ controlHybrid Taguchi-Genetic Algorithm (HTGA)time-varying parameter perturbationslinear matrix inequalities (LMIs)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是探討具有時變不確定量之多自由度機械系統之 強健振動控制。首先針對多自由度機械系統挑選一組整型(Shaping)用的權重函數(Weighting function),配合田口基因演算法(HTGA;Hybrid Taguchi-Genetic Algorithm)的最佳化方法搜尋找尋一組最佳權重函數之增益值,將受控系統結合權重函數,求出一擴增系統,再運用 理論求得一控制器,以取得控制系統的初步性能。在強健控制方面,結合具時變參數擾動之原受控系統與求得之 控制器,形成一閉迴路系統。針對此閉迴路系統,文中應用一線性矩陣不等式LMI (Linear Matrix Inequality)的穩定性條件,來確保不確定量多自由度機械系統能達到良好的減震效果並保有強健穩定性,文中以一汽車懸吊系統之工程例題來說明及驗證本文的設計方法之實用性。
This paper proposes a robust H∞vibration conrol approach for a class of multi-degree mechanical systems with time-varying perturbations. In the approach, weighting functions for loop shaping are first chosen to combine with the original system such that a generalized plant is formed. Then, for the generalized plant, a controller is obtained by using H∞ control method. Then, a sufficient condition in terms of linear matrix inequalities (LMIs) is employed to guarantee that the resulting control system is asymptotically stable in the presence of time-varying parameter perturbations. Finally, a simulation example of a vehicle suspension system is given to demonstrate the use of the design approach.
中文摘要......................................................................................................................Ⅰ
Abstract........................................................................................................................Ⅱ
致謝..............................................................................................................................Ⅲ
目錄..............................................................................................................................Ⅳ
圖目錄.........................................................................................................................Ⅶ
表目錄..........................................................................................................................Ⅷ

第一章 緒論.....................................................................................................................1
1.1 前言.............................................................................................................1
1.2 文獻回顧.....................................................................................................3
1.3 研究方法與目的.........................................................................................5
1.4 研究流程................................................................................................6
1.5 論文架構........................................................................................................7
第二章 具不確定量多自由度系統之 減振強健控制...............................................8
2.1 簡介.............................................................................................................8
2.2 多自由度機械系統描述................................................................................9
2.3 振動控制................................................................................................11
2.4 強健控制......................................................................................................15
第三章 基因演算法與田口品質工程簡介...................................................................17
3.1 前言..............................................................................................................17
3.2 基因演算法(GA)..........................................................................................18
  3.2.1介紹....................................................................................................18
   3.2.2-1 基因演算法架構..................................................................19
3.2.2-2 初始設定..............................................................................20
3.2.2-3 參數編碼與計算適應函數..................................................21
3.2.2-4 選擇和複製..........................................................................21
3.2.2-5 交配......................................................................................22
3.2.2-6 突變......................................................................................23
3.2.2-7 懲罰函數..............................................................................24
3.3 田口品質工程..............................................................................................25
3.3.1 簡介...................................................................................................25
3.3.2 田口實驗過程...................................................................................25
3.2.2-1 直交表..................................................................................26
3.2.2-2 SN比....................................................................................27
3.4 田口基因演算法(HTGA)............................................................................30
第四章 應用HTGA搜尋多自由度機械系統 減振控制法之權重函數增值...32
   4.1前言..............................................................................................................32
   4.2多自由度機械系統搜尋最佳 減振控制法權重函數之增益值參數設定
.....................................................................................................................33
     4.2-1基因演算法之編碼與初始族群......................................................33
4.2-2適應函數設定..................................................................................33
4.2-3 選擇...................................................................................................34
4.2-4 交配操作...........................................................................................35
4.2-5 田口基因演算法(HTGA)的運用.....................................................36
4.2-6 突變操作...........................................................................................38
4.2-7 條件終止...........................................................................................39
4.3 多自由度機械系統範例模擬......................................................................40
4.3-1 前言...................................................................................................40
4.3-2多自由度機械系統搜尋 減振控制法之權重函數增益值設定..40
4.3-3 多自由度機械系統模擬響應圖.......................................................45
第五章 結論...................................................................................................................48
第六章 參考文獻...........................................................................................................50












圖目錄
圖1.4 研究步驟流程圖....................................................................................................6
圖2.1 一般化的控制對象方塊圖..................................................................................11
圖2.2 閉迴路系統方塊圖..............................................................................................14
圖3.1 基因演算法基本機制圖......................................................................................19
圖3.2 基因演算法之流程圖..........................................................................................20
圖3.3 輪盤中扇形面積大小和適應值一致..................................................................22
圖3.4 單點交配..............................................................................................................23
圖3.5 雙點交配..............................................................................................................23
圖3.6 均等交配..............................................................................................................23
圖3.7 突變......................................................................................................................24
圖3.8 直交表符號表示圖..............................................................................................26
圖3.9 田口基因演算法流程方塊圖..............................................................................31
圖4.1 交配示意圖..........................................................................................................36
圖4.2 編碼說明圖..........................................................................................................36
圖4.3 突變示意圖..........................................................................................................39
圖4.4 1/4汽車懸吊系統...............................................................................................40
圖4.5 路面干擾示意圖..................................................................................................42
圖4.6 W1、W3權重函數頻率嚮應圖............................................................................44
圖4.7 系統懸吊工作響應圖..........................................................................................46
圖4.8 車身位移響應圖..................................................................................................46
圖4.9 輸入之控制力......................................................................................................47
表目錄
表3.1 為 直交表...................................................................................................27
表4.1 因子水準的配置..................................................................................................37
表4.2 L8(27)直交表…....................................................................................................37
表4.3 實驗因子水準配置表..........................................................................................38
[1] Zheng, L. A., 2003, “Robust stabilization of structural systems with time-varying structured and unstructured Perturbations”, Tainan, Taiwan, R.O.C., pp. 155-161.
[2] Chou, J. H., Chen, S. H. and Chao, C. H., 1998, “Robust stabilization of flexible mechanical systems under noise uncertainties and time-varying parameter perturbations”, Journal of Vibration and Control, Vol.4, pp. 167-185.
[3] Chen, S. H., Chou, J. H. and Zheng, L. A., 2000, “Robust Kalman-filter-based frequency-shaping optimal active vibration control of uncertain flexible mechanical systems”, The Chinese Journal of Mechanics, Vol. 16, pp. 349-359.
[4] Jeong, S. G.., et al, 2001, “Robust Controller Design for Performance Improvement of a Semi-Active Suspension Systems”, IEEE Trans. Digital Object Identifier., Vol.3,pp 1458-1461.
[5] Du, H., Sze, K. Y. and Lam, J., 2005, “Semi-active control of vehicle suspension with magneto-rheological dampers”, Journal of Vibration and Control, Vol.283, pp. 981-996.
[6] Chou, J. H., Chen, S. H. and Zheng, L. A., 2003, “LMI condition for robust stability of linear system with both time-varying elemental and norm-bounded uncertainties”, Journal of Chinese Institute of Engineers, Vol.26, pp.101-105.
[7] Zheng, L. A., Chen, S. H. and Chou, J. H., 2004, “LMI robust stability condition for linear systems with time-varying elemental uncertainties, norm-bounded uncertainties and delay perturbations”, JSME International Journal, Series C, Vol.47, pp. 275-279.
[8] Tsai, J. T., Liu, T. K. and Chou, J. H., 2004, “Hybrid Taguchi-genetic algorithm for global numerical optimization”, IEEE Transaction On Evolutionary Computation, Vol.8, pp. 365-377.
[9] 劉東官、何敏蓉,2003,“利用田口實驗及多目標最佳化基因遺傳演算法於控制器參數設計”,第二十屆機械工程研討會論文集,頁71-78。
[10] Doyle, J. C., et al, 1989, “State Space Solution to Standard and Control Problems”, IEEE Trans. Automat Contr., Vol. 34, pp. 831-846.
[11] Zhou, K. and Doyle, J. C., 1998, Essentials of Robust control, Prentice Hall, Upper saddle River, New Jersey.
[12] Maciejowski, J. M., 1989, Multivariable Feedback Design, Addison-Wesley Publishing Company , Cambridge.
[13] 楊憲東,葉芳栢,1997,線性與非線性 控制理論,Game Theoretic Approach,全華,台北。
[14] Francis, B. A., 1987, A course in Control Theory, Springer, New York.
[15] Assadian, F., 2002, “A comparative study of optimal linear controllers for vibration suppression”, Journal of the Franklin Institute, 339, pp.347-360.
[16] Moran, A. and Nagai, M., 1992, “Analysis and Design of Active Suspensions by Robust Control Theory”, JSME Int. J., Series III, vol. 35, No. 3, pp. 427-437.
[17] Luenberger, D., 1971, “An Introduction to Observers”, IEEE Trans. Automatic Control, Vol. AC-16, PP.596-603.
[18] Wang, S. G.., Yeh, H. Y. and Roschke, P. N., 2001, “Robust Control for Structural Systems with Parametric and Unstructured Uncertainties”, Journal of Vibration and Control, 7, pp.753-772.
[19] Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, Ann Arbor, The University of Michigan Press.
[20] Holland, J. H., 1992, “Genetic Algorithms”, Scientific American July, pp. 66-72.
[21] Golderg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Reading, Addison-Wesley.
[22] Jong, D. and Alan, K., 1975, “Analysis of the behavior of a class of a genetic adaptivesystem”, Ph. D. Dissertation, The University of Michigan, AnnArbor.
[23] Alkhatib, R., Jazar, G. N. and Golnaraghi, M. F., 2004, “Optimal design of passive linear suspension using genetic algorithm”, Journal of Sound and Vibration, Vol. 275, pp. 665-691.
[24] Scott, D. A., Karr, C. L. and Schinstock, D. E., 1999, “Genetic algorithm frequency-domain optimization of an antiresonant electromechanical controller”, Engineering Applications of Artificial Intelligence, Vol. 12, pp. 201-211.
[25] 邱元泰、季美秀,2002,“遺傳演算法在排課問題之應用”,碩士論文,國立中山大學數學研究所。
[26] 陳信宏,2004,田口品質工程上課講義,高雄應用科技大學機械與精密工程所。
[27] 蘇朝墩,2002,品質工程,台北,中華民國品質學會,三民書局。
[28] Tsai, J. T., Chou, J. H. and Liu, T. K., 2006, “Optimal Design of Digital IIR Filters by Using Hybrid Taguchi Genetic Algorithm”, IEEE transactions on industrial electronics, Vol.53, pp. 867-879.
[29] Chen, S. H., Ho, W. H. and Chou, J. H., 2006, “Optimal Output feedback Control for Linear Uncertain Systems Using LMI-Based Approach and GeneticAlgorithm”, IEEE International conference on System, Vol.53, pp. 4136-4141.
[30] Tsai, J. T., Chou, J. H. and Liu, T. K., 2006, “Tuning the Structure and Parameters of a Neural Network by Using Hybrid Taguchi-Genetic Algorithm”, IEEE Transactions on neural network, Vol. 17, pp. 69-80.
[31] 尤英和、劉東官, 2004,“基於遺傳演算法之連桿軌跡最佳化設計-以六連桿步行馬為例”,碩士論文,國立高雄第一科技大學機械與自動化工程系。
[32] 吳宗益、劉東官, 2002,“應用於基因演算法及田口實驗法於模具生產排程系統之研究”,碩士論文,國立高雄第一科技大學機械工程研究所。
[33] 翁振恭, 2004,”使用基因演算法於搞業最佳化之研究”, 碩士論文,大葉大學自動化工程學系。
[34] 周鵬程, 2005,遺傳演算法原理與應用(修訂二版)活用Matlab,台北,全國科技圖書股份有限公司。
[35] Matlab Robust Control toolbox, 2008, 3td edition.
[36] Hedrick, J. K. and Batsuen, T., 1990, “Invariant Properties of Automotive Suspensions”, Proceedings of The Institution of Mechanical Engineers, Vol.204 , pp. 21-27.
[37] 趙全鋐,2001,“ 強健控制之權重函數選取-類神經網路設計法”,碩士論文,國立成功大學造船及船舶機械工程學系。
[38] 賴峰甫,2006,“撓性車輛主動式懸吊系統之動態建模與強健性控制器設計”,碩士論文,國立台灣科技大學自動化及控制研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔