(3.236.222.124) 您好!臺灣時間:2021/05/19 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:裴國風
研究生(外文):Quoc-Phong Bui
論文名稱:脈動壓力對管液壓力成型影響之研究
論文名稱(外文):Study on the Effects of Pulsating Pressure on the Tube Hydroforming Process
指導教授:黃世疇
指導教授(外文):Shyh-Chour Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:48
中文關鍵詞:脈動液壓成型鍛壓成型內壓力振盪有限元素模擬
外文關鍵詞:pulsating hydroforminghammering hydroformingoscillation of internal pressurefinite element method simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:595
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究完成了液壓管成型的模擬。文中探討在脈動液壓管成型間藉由內壓力振盪改善液壓管的成型性,及在內壓力振盪下,管子以均勻膨脹的形態進行之液壓成型性。在常高壓下,可以觀察到使管璧變薄的圓形膨脹,然而在常低壓下則會產生皺摺。脈動液壓成型中,這些缺點可藉由內壓力振盪來預防。一般的液壓管成型則是均勻的膨脹,但也有管壁變薄的缺點,這個原因可由脈動液壓成型管的應力分量變化來解釋。
The simulation of a hydroformed tube is performed in this study. The improvement in formability by the oscillation of internal pressure during the pulsating hydroforming of a tube is examined and the free bulging hydroforming of a tube under oscillation and constant internal pressure is performed. At a high constant pressure, a round bulge with local thinning is observed, whereas for a low constant pressure, wrinkling occurs. These defects from constant internal pressure are prevented by the oscillation of internal pressure in the pulsating hydroforming process. With pulsating hydroforming, a uniform expansion in the free bulging region is obtained, thus improving formability by preventing local thinning. The cause of uniform expansion in the pulsating hydroforming of a tube is interpreted from the variations of stress components.
ABSTRACT (Chinese) i
ABSTRACT (English) ii
ACKNOWLEDGMENTS iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
CHAPTER 1 INTRODUCTION AND RESEARCH OBJECTIVES 1
1.1 Introduction 1
1.2 Research objectives 2
1.3 Thesis organization 2
CHAPTER 2 LITERATURE REVIEW OF THE MECHANICS OF TUBE HYDROFORMING 4
2.1 Tube hydroforming system 5
2.2 Classification of tube hydroforming parts 6
2.3 Tube hydroforming process 7
2.3.1 Tube material 7
2.3.2 Loading path 8
2.3.3 Geometry and tube dimensions 9
2.3.4 Friction aspects in tube hydroforming 10
2.3.5 Formability in tube hydroforming 12
2.4 Ways of improving formability in tube hydroforming 19
CHAPTER 3 FINITE ELEMENT MODEL 22
3.1 Finite Element Formulation 22
3.2 Geometry Model 23
3.3 Loading path 24
3.4 Meshing 26
3.5 Material Data 27
CHAPTER 4 RESULTS AND DISCUSSION 29
4.1 Effect of pulsating hydroforming on the distribution of wall thickness -- 29
4.2 Effect of base pressure on the shape of bulging region 32
4.3 Effect of number of cycles on the shape of bulging region 33
4.4 Effect of amplitude on the free bulging region of the hydroformed tube 34
4.5 Variation of stress 35
4.6 Cause of uniform expansion 39
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 43
5.1 Conclusions 43
5.2 Future Works 44
References 45
[1]K. Siegert, M. Haussermann, B. Losch, and R. Rieger , “Recent developments in hydroforming technology” , Journal of Materials Processing Technology, 98 (2000), pp. 251-258.
[2]G. Ngaile, M. Gariety, and T. Altan , “Enhancing tribological conditions in tube hydroforming by using textured tubes”, Journal of Tribology, July 2006, Vol.128, pp.674-676.
[3]M. Ahmetoglu, K. Sutter, X.J. Li, and T. Altan , “Tube hydroforming: current research, applications and need for training”, Journal of Materials Processing Technology, 98 (2000), pp. 224-231.
[4]S. Jirathearanat, C. Hartl, and T. Altan , “Hydroforming of Y-shapes product and process design using FEA simulation and experiments”, Journal of Materials Processing Technology, 146 (2004), pp. 124-129.
[5]Ch. Hartl , “Research and advances in fundamentals and industrial applications of hydroforming”, Journal of Materials Processing Technology, 167 (2005), pp. 383-392.
[6]P. Groche, R. Steinheimer, and D. Schmoeckel , “Process Stability in the Tube Hydroforming Process”, CIRP Annals - Manufacturing Technology, 52(2003), pp. 229-232.
[7]M. Starno ,”Tube hydroforming: System analysis and process design”, PhD Dissertation, Oregon State University, 2002.
[8]B. Carleer, G. van der Kevie, L. de Winter, and B. van Veldhuizen , “Analysis of the effect of material properties on the hydroforming process of tubes”, Journal of Materials Processing Technology, 104 (2000), pp. 158-166.
[9]Y. Aue-U-Lan, G. Ngaile, and T. Altan , “Optimizing tube hydroforming using process simulation and experimental verification”, Journal of Materials Processing Technology, 146 (2004), pp. 137-143.
[10]S.J. Kang, H.K. Kim, and B.S. Kang , “Tube size effect on hydroforming formability”, Journal of Materials Processing Technology, 160 (2005), pp. 24-33.
[11]N. Jain, and J. Wang, “Plastic instability in dual-pressure tube hydroforming process”, International Journal of Mechanical Sciences, 47 (2005), pp. 1827-1837.
[12]K.J. Fann, and P.Y. Hsiao , “Optimization of loading conditions for tube hydroforming”, Journal of Materials Processing Technology, 140 (2003), pp. 520-524.
[13]M. Strano, S. Jirathearanat, S.G. Shr, and T. Altan , “Virtual process development in tube hydroforming”, Journal of Materials Processing Technology, 146 (2004), pp. 130-136.
[14]M. Ahmetoglu, K. Sutter, X.J. Li, and T. Altan , “Tube hydroforming: current research, applications and need for training”, Journal of Materials Processing Technology, 98 (2000), pp. 224-231.
[15]G. Liu, S. Yuan, and B. Teng , “Analysis of thinning at the transition corner in tube hydroforming”, Journal of Materials Processing Technology, 177 (2006), pp. 688-691.
[16]G.T. Kridli, L. Bao, P.K. Mallick, and Y. Tian , “Investigation of thickness variation and corner filling in tube hydroforming”, Journal of Materials Processing Technology, 133 (2003), pp. 287-296.
[17]M. Plancak, F. Vollertsen, and J. Woitschig , “Analysis, finite element simulation and experimental investigation of friction in tube hydroforming”, Journal of Materials Processing Technology, 170 (2005), pp. 220-228.
[18]G. Ngaile, M. Gariety, and T. Altan , “Enhancing tribological conditions in tube hydroforming by using textured tubes”, Journal of Tribology, July 2006, Vol.128, pp.674-676.
[19]F. Vollertsen, and M. Plancak , “On possibilities for the determination of the coefficient of friction in hydroforming of tubes”, Journal of Materials Processing Technology, 125-126 (2002), pp. 412-420.
[20]Y. Xu, Modern formability: Measurement, analysis and applications, Hanser Gardner Publications, Cincinnati, OH, 2006.
[21]M. Koc, and T. Altan , “Prediction of forming limits and parameters in the tube hydroforming process”, International Journal of Machine Tools & Manufacture, 42 (2002), pp. 123-138.
[22]D. Daly, P. Duroux, M. Rachik, J.M. Roelandt, and J. Wilsius , “Modelling of the post-localization behaviour in tube hydroforming of low carbon steels”, Journal of Materials Processing Technology, 182 (2007), pp. 248-256.
[23]H. Singh, Fundamentals of Hydroforming, Society of Manufacturing Engineers, USA (2003).
[24]C.L. Chow, and X.J. Yang, “Bursting for fixed tubular and restrained hydroforming”, Journal of Materials Processing Technology, 130-131 (2002), pp. 107-114.
[25]G. Nefussi, and A. Combescure , “Coupled buckling and plastic instability for tube hydroforming”, International Journal of Mechanical Sciences, 44 (2004), pp. 899-914.
[26]M. Brunet, S. Boumaiza, and G. Nefussi, “Unified failure analysis for tubular hydroforming”, Journal of Materials Processing Technology, 149 (2004), pp. 217-225.
[27]T. Hama, M. Asakawa, H. Fukiharu, and A. Makinouchi , “Simulation of Hammering Hydroforming by Static Explicit FEM”, ISIJ International, 44( 2004), pp. 123-128.
[28]K. Moril, A.U. Patwari’, and S. Makil , “Improvement of Formability by Oscillation of Internal Pressure in Pulsating Hydroforming of Tube”, CIRP Annals - Manufacturing Technology, 53(2004), pp. 215-218.
[29]T. Hama, M. Asakawa and A. Makinouchi, “Investigation of factors which cause breakage occurring on a hydroformed automotive part”, Journal of Materials Processing Technology, 150 (2004), pp. 10–17.
[30]R. M. McMeeking and J. R. Rice, “Finite Element Formulations for Problems of Large Elastic-Plastic Deformation”, International Journal of Solids and Structures, 11, pp. 601-616.
[31]R. Hill, “A theory of the yielding and plastic flow of anisotropic metals”, Proc. R. Soc. London 193A (1948) pp. 281.
[32]Y. Yamada, N. Yoshimura and T. Sakurai, “Plastic-stress strain matrix and its application for the solution of elastic-plastic problems by the finite element method”, Int. J. Mech. Sci. 10 (1968), pp. 343–354.
[33]K. Dipl, Metal forming handbook, Springer-Verlag Berlin Heidelberg (1998), pp.419-420.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top