(3.238.173.209) 您好!臺灣時間:2021/05/12 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳宜佐
研究生(外文):Yi-Tzuo Chen
論文名稱:以並行機構驅動之兩足機器人的設計
論文名稱(外文):The Design of Biped Robots Driven by Parallel Mechanisms
指導教授:張志鋒張志鋒引用關係
指導教授(外文):Chi-Feng Chang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:143
中文關鍵詞:步行機器人並行機構腿部構造
外文關鍵詞:Biped robotParallel mechanismsStructure of the leg
相關次數:
  • 被引用被引用:2
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本文開發一台具有二十三個自由度之小型人型機器人,它的主要特色為(a)採用混合結構以組成機器人之腿部,即同時包含了串列結構和並行結構;(b)每條腿皆有兩個膝關節;(c)髖關節和踝關節之運動皆透過具有兩個自由度之空間7R機構加以驅動。採用兩個膝關節的主要原因為,此種設計可使兩腿具有較大的運動範圍,而且可承受較大的負載,因為該二膝關節可由兩顆伺服馬達驅動,故可提供較大的扭矩。至於採用空間7R機構以驅動髖關節和踝關節之目的,也是為了使關節之每一個旋轉自由度皆有兩顆伺服馬達合力驅動。
全文之架構為,首先介紹設計此一機器人所採用之基本設計概念,以及機器人之拓樸結構。然後,詳細說明和探討機器人之機械設計細節和對應之組裝程序。由於該機器人之腿部結構與現有文獻所介紹之型態有極大的差異,故提出一個解析法以進行逆向運動分析。因此,若任意指定足部相對於軀幹之位置和方位,皆可由解析法直接求得腿上各關節所對應之角位移。最後,則進行機器人之製作,並進行一序列的實驗以檢驗其運動性能。
經由實驗發現前述原型機尚有一些待改進之處,尤其是接頭處之強度不足,故再進行必要之修正並建造改良型之機器人進行實驗,目前該機器人已可執行坐下、起立和步行等動作。這些實驗顯示採用混合型結構以建造小型兩足機器人之構想確實可行,而該混合結構也比串列式結構更適合用於承受較大的負載。
A small biped robot with twenty-three degrees of freedom is developed in this study. The robot has some special characteristics, such as (a) its legs are a hybrid of serial-link and parallel-link structures; (b) each leg has two knee joints, and (c) its hip and ankle joints are both driven by a spatial 7R parallel mechanism with two degrees of freedom. The two knees can generally make a leg have larger motion range than using a single knee. Besides, they can bear more loads because two servos are used to drive the two knee joints with more torque. As to the spatial 7R parallel mechanism, it is used to make the rotations of rolling and pitching of a joint be driven by two servos simultaneously.
The design concepts and the topological structure of the robot are firstly introduced. Then, the mechanical design and the assembly process are also discussed in detail. Since the structure of the leg is very different to those existing ones, an analytical method is proposed for solving the problem of inverse kinematics of the robot. Thus, all the joint angles of a leg can be analytically determined if the location and orientation of a foot relative to the trunk are given. Finally, a prototype robot is manufactured, and some experiments are carried out for evaluating its motion performance.
Since some drawbacks of the original prototype, such as weak strength of joints, are found in the experiments, refinements are made and an improved prototype is constructed. Currently, the improved robot can sit down, stand up and walk. The experiments show that it is feasible to construct small biped robots with serial and parallel hybrid structures. And the robots with hybrid structures are more efficient to bear large loads than those with serial-link structures.
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號表 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究目標 10
1.4 論文之架構 10
第二章 機器人機構之設計 11
2.1 以並行機構為接頭之機器腿 11
2.1.1 基本設計概念 11
2.1.2 髖關節與其驅動機構 13
2.1.3 膝關節與其驅動機構 17
2.1.4 踝關節與其驅動機構 20
2.1.5 機器腿之製作與測試 22
2.2 採用改良型機器腿之兩足機器人 25
2.2.1 基本概念設計 25
2.2.2 髖關節與其驅動機構 26
2.2.3 膝關節與其驅動機構 31
2.2.4 踝關節與其驅動機構 33
2.2.5 機器腿原型之製作與測試 34
2.3 機器人上半身 37
2.3.1 基本概念設計 37
2.3.2 腰部關節與其驅動機構 38
2.3.3 機器人上半身原型之製作與測試 41
2.4 全身機器人 42
2.5 本章小結 44
第三章 運動分析 45
3.1 座標轉換矩陣 45
3.2 逆向運動分析 46
3.2.1 機器腿之逆向運動分析 47
3.2.2 改良型機器腿之逆向運動分析 53
3.3 運動模擬 56
3.3.1 驅動機構之工作空間 56
3.3.2 腿部運動模擬 58
3.4 本章小結 64
第四章 步行動作之規劃 65
4.2 產生足踝軌跡 70
4.3 步行運動模擬 72
4.4 本章小結 76
第五章 硬體製作與機器人動作實測 77
5.1 硬體系統架構與控制程式介面 77
5.2 機器腿之休息動作實測 84
5.3 全身機器人之休息動作實測 88
5.4 改良後機器腿之步行動作實測 92
5.5 本章小結 96
第六章 結論與建議 97
參考文獻 99
附錄A. 產生質心軌跡流程 102
附錄B. 產生足踝點軌跡 107
附錄C. 順向運動分析矩陣 110
附錄D. 硬體電路圖與相關資料 114
附錄E. 桿件外型設計之分析與改良 116
附錄F. 零件表與花費估算 122
自述 131
[1]Vukobratovic, M., and Juricic, D., 1969, ”Contribution to the Synthesis of Biped Gait,” IEEE Trans. Bio-Med. Eng., vol. BME-16, no. 1, pp. 1-6.
[2]Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., and Tanie, K., 2001, “Planning Walking Patterns for a Biped Robot,” IEEE 7Yans. Robot. Aurora., 17,3, pp. 280-289.
[3]Kajita, S., et al., 2005, “The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation,” Proc. of IEEE/RSJ Int. Conf. on Robotics and Automation, pp. 2416-2421.
[4]Morisawa, M., Kajita, S., Kaneko, K., Harada, K., Kanehiro, F., Fujiwara, K., and Hirukawa, H., 2005, “Pattern Generation of Biped Walking Constrained on Parametic Surface,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2416-2421.
[5]Kenji, K., Fumio, K., Shuuji, K., Hirohisa, H., Toshikazu, K., Masaru, H., Kazuhiko, A., and Takakatsu I., 2004, “Humanoid Robot HRP-2,” Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA.
[6]Lanni, C., Ceccarelli, M., Ottaviano, E., and Figliolini, G., 1999, “Actuating Mechanisms for Pantograph Legs: Structures and Characteristics,” Proceedings of the Tenth World Congress on the Theory of Machines and Mechanisms, Oulu, Finland, Vol. 3, pp. 1196-1201.
[7]Funabashi, H., Takeda, Y., Kawabuchi, I., and Higuchi, M., 1999, “Development of a Walking Chair with a Self-Attitude-Adjusting Leg Mechanism for Stable Walking on Uneven Terrain,” Proceedings of the Tenth World Congress on the Theory of Machines and Mechanisms, Oulu, Finland, Vol. 3, pp. 1164-1169.
[8]Yusuke, S., et al., 2004, “Support Torque Reduction Mechanism for Biped Locomotor with Parallel Mechanism,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, September 28 - October 2.
[9]Jungwon, Y., and Jeha, R., 2005, “A Novel Reconfigurable Ankle/Foot Rehabilitation Robot,” Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain.
[10]Espiau, B., and Sardain, P., 2000, “The Anthropomorphic Biped Robot BIP2000,” Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA.
[11]Luciano, M., et al., “Kinematical Modeling and Optimal Design of a Biped Robot Joint Parallel Linkage, 2006, ” J. of the Braz. Soc. of Mech. Sci. & Eng., Vol.XXVIII, No.4, pp. 505-511.
[12]http://www.austrobots.com/
[13]Liquan, W., Zhiwei, Y., and Hengnan, L., 2008, “Study on Optimal Design for Two DOF Parallel Ankle Joint Mechanism of a Biped Robot,” Proc. IEEE Int. Conf. on Mechatronics and Automation.
[14]余泓宜,2007,一種具有兩自由度之步行機構的分析與合成,國立高雄應用科技大學機械與精密工程研究所,碩士論文。
[15]林志庭,2008,基於SOM神經網路之空間六桿步行機構的運動分析,國立高雄應用科技大學機械與精密工程研究所,碩士論文。
[16]http://www.parallax.com/
[17]Sebastian, L., Thomas, B., Markus, S., Heinz, U., and Friedrich, P., 2006, “Leg Design for a Humanoid Walking Robot,” in Proc. Int. Conf. Humanoid Rob. (Humanoids), pp. 536-541.
[18]Sebastian, L., Thomas, B., Heinz, U., and Friedrich, P., 2006, “Modular Joint Design for Performance Enhanced Humanoid Robot LOLA,” Proc. IEEE Int. Conf. on Robotics and Automation, Orlando, Florida.
[19]Ichiro Kato, 1985, “Development of Waseda Robot – The Study of Biomechanisms at (the late) Kato Laboratory,” Waseda University.
[20]http://lucy.vub.ac.be/
[21]http://www.ai.mit.edu/projects/leglab/simulations/simulations.html
[22]http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/index.htm
[23]Waseda University, http://www.takanishi.mech.waseda.ac.jp/
[24]Honda, http://world.honda.com/ASIMO/history/
[25]Abhishek, S. C. Jain, 2004-05, “Designing a Biped Robot with Efficient Motion Control,” B. Tech Project Report, Indian Institute of Technology Roorkee.
[26]Keun Park, Y. S. Kim, C. S. Kim, and H. J. Park, 2007, “Integrated application of CAD/CAM/CAE and RP for rapid development of a humanoid biped robot,” Journal of Materials Processing Technology, 187-188, 187-188, pp. 609-613.
[27]Kuroki, Y., 2001, “A small biped entertainment robot,” International Symposium on Micromechatronics and Human Science, pp. 3-4.
[28]Sony, http://www.sony.net/SonyInfo/News/Press_Archive/200011/00-057E2/
[29]Sony, http://www.sony.net/SonyInfo/News/Press_Archive/200303/03-0324E/
[30]Sony, http://www.sony.net/SonyInfo/News/Press_Archive/200312/03-060E/
[31]Kondo, http://www.kondo-robot.com/
[32]http://www.robotis.com/
[33]Kajita, S., et al., 2002, “A Realtime Pattern Generator for Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, Washington, DC.
[34]Gen, E., et al., 2004, “An Empirical Exploration of a Neural Oscillator for Biped Locomotion Control,” Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA.
[35]梶田秀司,仿人機器人,管貽生譯,2007,北京市。
[36]http://www.acroname.com/
[37]http://www.e-clec-tech.com/aimotor1001.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔