(3.238.96.184) 您好!臺灣時間:2021/05/12 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃嘉修
研究生(外文):Chia-Hsiu Huang
論文名稱:微銑削刀具之幾何參數設計與銑削加工之刀具動態撓度分析
論文名稱(外文):The Design of the Geometry of Micro Endmills and Dynamic Deflection Analysis in End Milling
指導教授:康耀鴻
指導教授(外文):Yaw-Hong Kang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:自然頻率刀具設計懸臂樑尤拉樑
外文關鍵詞:natural frequencytool designEuler Bernoulli beam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:853
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
隨著現今及未來工業產品愈趨於微小化、形狀與結構複雜化的趨勢,未來微加工技術與系統將在全球工業製造上佔有不可或缺的重要地位。精密加工大量應用於生物醫學、精密機械等領域,如微小機器人零件、微小馬達、微模具開發等微型電子與醫療器械之製造。
本篇研究中,首先參考國內外製造微銑刀的各家刀具廠商,依照現有微刀具之幾何分類及尺寸規格,針對不同刀具外廓幾何,如微銑刀刀身所具有之錐度、刀刃螺旋角、刀柄半徑配合加工參數中不同刀具伸出主軸套筒的長度,以Pro/E繪圖軟體進行多款微銑刀三維實體模型之設計與建模,再利用ANSYS有限元素分析技術來計算各刀具的剛性及強度及完成自然振動模態之頻率分析。
再者,吾人利用Euler Bernoulli 理論所推導均勻彈性樑之振動微分方程式數值解析,以及進一步所推導的二段樑、非均勻截面之懸臂樑的振動微分方程式,利用均勻彈性樑的振動微分方程式來預測外型近似懸臂樑的端銑刀具之自然頻率、二段樑的振動微分方程式來預測微端銑刀之自然頻率。最後將傳統端銑刀分別簡化為懸臂樑以及二段樑,再利用傅立葉轉換及傅立葉積分求得的銑削過程中的總銑削力,當作樑之強迫振動的外力項,求得銑削過程中,刀具的動態撓度變化,於將來可以用來預測銑削撓度誤差分析所用。
In recent years, micromachining has become an important technique in fabricating microparts. Micro end-milling is a widely used manufacturing process in industry due to its versatility in generating complex shapes in various materials. Also it has many applications in industries such as aerospace, die and mold, automotive, biomedicine and component manufacturing.
In this thesis,we refer to many endmills from different manufacturing menu catalogs, we also investigate the tool geometry such as tool tapers, helix angle, tool diameter, overhang of tool etc. We establish various solid modellings of cutting tools by using Pro/E software, and the natural frequency and stiffness of cutting tool are analyzed by ANSYS software.
The mode shapes and natural frequencies of tool structures of dynamic behavior are analyzed. Furthermore, the differential equation of forced vibration for continuous two segmented beam is derived by using Euler Bernoulli theory. The endmill can be modeled as a two-segment beam which has two different section areas. The total cutting force of end milling is obtained by Fourier transform and it is considered as the external periodic vibration force acting on the cutting tool. As a result, we can determine the dynamic deflection of endmill in end milling. The results in our thesis can be used in error analysis of deflection in micro end milling.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII

第一章 緒 論
1.1 前 言 1
1.2 文獻回顧 2
1.3 研究方法及目的 6
1.4 研究範疇與論文架構 7
第二章 彈性樑結構之基礎振動理論
2.1 撓度曲線之微分方程式 8
2.2 彈性樑自由振動微分方程式 12
2.2.1 彈性樑自由振動(無阻尼Undamped)系統 12
2.2.2 樑和軸的自由縱向振動 13
2.2.3樑和軸的橫向振動 15
2.2.4 懸臂樑振動理論之自然頻率數值解求解範例 22
2.3 中間點不連續之二段樑自由振動微分方程式 29
2.4 利用自由振動微分方程式預測二段樑結構自然頻率振動 33
2.4.1 二段樑自然頻率預測之數值模擬結果與有限元素分析結果 34
2.4.2 微端銑刀與簡化成二段樑之自然頻率數值解和FEM比較 35
2.5 非等截面樑自由振動微分方程式推導 40
第三章 刀具幾何參數設計與有限元素靜態分析
3.1 微銑削刀具的幾何設計與建模 44
3.1.1 微銑刀具的幾何參數 44
3.2 有限元素分析軟體ANSYS基本架構 51
3.2.1 有限元素法的基本概念 51
3.2.2有限元素法分析的基本過程 52
3.2.3 網格元素形狀的選用與建立 53
3.3 微銑刀具之靜態結構分析 55
第四章 刀具有限元素模態分析
4.1 機械系統振動簡介 70
4.2 刀具模態自然頻率有限元素分析 72
第五章 銑削刀具動態撓度預測
5.1 樑末端受變動諧波力的均勻懸臂樑 77
5.2 兩段式懸臂樑之強迫振動 82
5.3 銑削力之頻域模式 88
5.4 銑削動態撓度模擬 93
第六章 結論與建議
6.1 結論 103
參考文獻 105
[1] Y. Altintas and E. Budak, “Analytical prediction of stability lobes in milling,” Annals of the CIRP, Vol.44, pp.357-362, 1995.
[2] K. Shirase and Y. Altintas, “Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills,” International Journal of Machine Tools and Manufacture, Vol.36, pp.567-584, 1996.
[3] J. Tlusty, S. Smith and W. R. Winfough, “Techniques for the use of long slender end mills in high-speed milling,” Annals of the CIRP, Vol.45, pp.393-396, 1996.
[4] S. Smith, W. R. Winfough and J. Halley, “The effect of tool length on stable metal removal rate in high speed milling,” Annals of the CIRP, Vol.47, pp.307-310, 1998.
[5] E. Budak and Y. Altintas, “Analytical prediction of chatter stability in milling-part I: general formulation,” ASME Journal of Dynamic System, Measurement, and Control, Vol.120, pp.22-30, 1998.
[6] E. Budak and Y. Altintas, “Analytical prediction of chatter stability in milling-part II: application of the general formulation to common milling systems,” ASME Journal of Dynamic System, Measurement, and Control, Vol.120, pp.31-36, 1998.
[7] E. Budak, “An analytical design method for milling cutters with nonconstant pitch to increase stability, part I: Theory,” Journal of Manufacturing Science and Engineering, Vol.125, pp.29-34, 2003.
[8] E. Budak, “An analytical design method for milling cutters with nonconstant pitch to increase stability, part II: Application,” Journal of Manufacturing Science and Engineering, Vol.125, pp.35-38, 2003.
[9] E. B. Kivanc and E. Budak, “Structural modeling of end mills for form error and stability analysis,” International Journal of Machine Tools and Manufacture, Vol. 44, pp.1151-1161, 2004.
[10]E. Budak, “Analytical models for high performance milling. Part I: cutting force, structural deformations and tolerance integrity,” International Journal of Machine Tools and Manufacture, Vol.46, pp.1478-1488, 2006.
[11]E. Budak, “Analytical models for high performance milling. Part II: process dynamics and stability,” International Journal of Machine Tools and Manufacture, Vol.46, pp.1489-1499, 2006.
[12]M. Zatarain, J. Munoa, G. Peigne and T. Insperger, “Analysis of the influence of mill helix angle on chatter stability,” Annals of the CIRP, Vol.46, pp.365-368, 2006.
[13]S. Turner, D. Merdol, Y. Altintas and K. Ridgway, “Modeling of the stability of variable helix end mills,” International Journal of Machine Tools and Manufacture, Vol.47, pp.1410-1416, 2007.
[14]J. Chae, S.S. Park and T. Freiheit, “Investigation of micro-cutting operations,” International Journal of Machine Tools and Manufacture, Vol.46, pp.313-332, 2006.
[15]L. Kops and D.T. Vo, “Determination of the equivalent diameter of an end mill based on its compliance,” Annals of the CIRP, Vol.39, pp.93-96, 1990.
[16]F Z Fang, H Wu, X D Liu, Y C Liu and S T Ng, “Tool geometry study in micromachining,” Journal of Micromechanics and Microengineering, Vol.13, pp.726-731, 2003.
[17]E. Uhlmann and K. Schauer, “Dynamic load and strain analysis for the optimization of micro mills,” CIRP Annals-Manufacturing Technology, Vol.54, pp.75-78, 2005.
[18]Singiresu S. Rao, Mechanical Vibrations, Addison Wesley, 1990.
[19]Willian T. Thomson and Marie Dilon Dahleh, Theory of vibration with Applications, Pearson Education International, 1998.
[20]Seon M. Han, Haym Benaroya and Timothy Wei, “Dynamic of transversely vibrating beams using four engineering theories,” Journal of Sound and Vibration, Vol.225(5), pp.935-988, 1999.
[21]Teresa Tsukazan, “The use of dynamical basis for computing the modes of a beam system with a discontinuous cross-section” Journal of Sound and Vibration,Vol.281, pp.1175-1185, 2005.
[22]Wang J.-J., Liang S. Y. and Bood W. J., “Convolution analysis of milling force pulsation,” ASEM Journal of Engineering for Industry, Vol.116, pp.111-116, 1996.
[23]Michael A. Koplow, Abhijit Bhattacharyya and Brian P. Mann,“Closed form solutions for the dynamic response of Euler-Bernoulli beams with step changes in cross section,” Journal of Sound and Vibration, Vol.295, pp.214-225, 2006.
[24]C. S. Anderson, S. E. Semercigil and Ö. F. Turan, “A passive adaptor to enhance chatter stability for end mills,” Machine Tools and Manufacture, Vol. 47, pp.1777-1785, 2007.
[25]鄭嘉敏,考慮剪切級梨切小應知通用銑削力模式及其在判認比切削係數、偏心幾何及穩定性預測上之應用,博士論文,國立成功大學機械工程研究所,2002。
[26]張家豪,以有限元素法探討薄葉片銑削加工之穩定性分析,碩士論文,國立成功大學機械工程研究所,2000。
[27]王睿,因刀具撓曲引起的微端銑削加工表面誤差之解析預測模式,碩士論文,國立高雄應用科技大學機械與精密工程研究所,2008。
[28] Singiresu S. Rao, Mechanical Vibrations, Addisin Wesley, 1990.
[29] S. Timoshenko, D. H. Young and W. Weaver, Vibration Problems in Engineering, New York: Wiley, 1974.
[30] William T. Thomson, Marie Dillon Dahleh, Theory of Vibration with Applications, Pearson Education International, 1998.
[31] J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th ed., Stanley Thornes Publishers, London , 1999.
[32]洪維恩,Matlab 7 程式設計,旗標,2008。
[33] Demeter G. Fertis, Mechanical and Structural Vibrations, John Wiley and Sins, Inc, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔