(18.206.238.77) 您好!臺灣時間:2021/05/17 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許淞淳
研究生(外文):Sung-Chuen Shiu
論文名稱:3-RRPRR型純平移並聯式機器人之運動分析及特性
論文名稱(外文):Kinematics Analysis and Properties of 3-RRPRR Pure Translational Parallel Manipulators
指導教授:李聰慶
指導教授(外文):Chung-Ching Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:101
中文關鍵詞:並聯式機器人純平移3-RRPRR型TPMD-H符號法則矩陣法
外文關鍵詞:Parallel ManipulatorPure Translational3-RRPRR TPMD-H notationMatrix method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:786
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
3-RRPRR型純平移並聯式機器人(簡稱3-RRPRR型TPM)為文獻[1]內的一類純平移並聨式機構;此類TPM包含特殊3-RRPRR型與3-UPU型兩種純平移機器人。本論文主要為探討此類型機器人的純平移特性、運動分析[2]、工作空間、奇異構形及性能分析作討論。首先描述其機構構造及可動性,由D-H符號法則定義各桿動坐標相對關係,利用坐標轉換原理導出端末器位移方程式,確認具有三自由度的純平移運動特性。以矩陣法推導逆向運動之閉合解,再推導正向運動解,且搭配電腦輔助軟體協助運動模擬,印證其正、逆向運動分析的正確性。接著,討論機器人的工作空間,利用端末器位移方程式繪出每肢的運動空間,再以幾何方法印證及分析工作空間的大小,並探討構造參數對於工作空間的影響。介紹Jacobian矩陣,利用Jacobian矩陣分別找出逆向奇異、正向奇異及聯合奇異三種構形,對該類並聯式機構做完整的奇異構形分析。除此之外,針對3-UPU型純平移並聯式機器人作性能分析,此包含可操作性、概況數值及速度性能分析,最後,對本文的研究結果做整理,且對該類純平移並聯式機器人在機構運動學方面值得後續研究的課題,提出建議。
3-RRPRR pure translational parallel manipulator (abbreviated as 3-RRPRR TPM) is a kind of pure translational parallel mechanisms proposed in ref. [1]. This kind of TPM includes a special 3-RRPRR and a 3-UPU TPMs. This paper focuses on the verification of pure translational motion, inverse kinematics analysis[2], workspace, singular configuration and performance index of this kind of TPM.
Defining link relative coordinate systems by D-H notation and applying the coordinate-transformation matrix fundamentals, we derive the end-effector displacement equations of manipulators. The pure translation is definitely verified. Then we establish the analytical closed-form solutions for inverse kinematics by matrix method, then do forward kinematics analysis. The correctness and validity of results are also confirmed by computer animation software.For workspace of the manipulator, used end-effector displacement equations to draw the workspace of each limb, verification and analysis of the workspace by geometry, investigate the impact on the workspace with the variation of architecture parameters. Used Jacobian matrix to found the inverse kinematic singularity, direct kinematic singularity and combined singularity. Focuses on the performance index of 3-UPU TPM, the performance index include manipulability, condition number, global conditioning index, velocity performance analysis, pay load performance analysis. Finally, we propose some suggestions for further investigations of 3-RRPRR TPMs.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
一、前言 1
二、構造分析及特性 4
2.1運動學模型 4
2.2構造描述 5
2.3空間純平移運動特性 8
三、運動學分析 21
3.1逆向運動學分析 21
3.2正向運動學分析 25
四、工作空間 39
4.1工作空間方程式 39
4.2幾何方法印證工作空間 47
4.3構造參數的影響 53
五、奇異構形分析 69
5.1Jacobian矩陣 69
5.2逆向奇異構形 73
5.3順向奇異構形 73
5.4聯合奇異構形 85
六、3-UPU型純平移並聯式機器人之性能分析 87
6.1可操作度指標 87
6.2概況數值 88
6.2.1歐幾里德範法 89
6.2.2坐標不變量範法 90
6.2.3概況數值比較 92
6.3速度性能分析 92
七、結論 98
參考文獻 100
作者簡介 104
1.Lee, C.-C. and Hervé, J. M., “Translational Parallel Manipulators with Doubly Planars Limbs” , Mech. Mach. Theory, Vol.41, pp. 433-455, 2006.
2.李聰慶、許淞淳, ”3-RRPRR型純平移並聯式機器人”,第十一屆全國機構與機器設計學術研討會論文集,新竹,pp.220~227,2008.
3.Gough, V. E. and Whithall, S. G., “Universal Tire Test Machine”, Proc.9th International Technical Congress, F.I.S.I.T.A., pp.177(Institution of Mechanical
Engineers), 1962.
4.Stewart, D., “A Platform with Six Degree of Freedom ” , Proc. Inst. Mech. Eng. London, Vol. 180,pp. 371-386, 1965.
5.McCallion, H. and Truong, P. D., “The Analysis of a Six Degree of Freedom Work Station for Mechanized Assembly,” in Proc. 5th World Congr. for the Theory of Machines and Mechanisms, pp. 611-616, 1979.
6.Hunt, K. H., “Structural Kinematics of In-Actuated Robot-Arms”, Trans. ASME J. Mech, Transmiss. Auto. Des., 105(4), pp. 705-712, 1983.
7.Tsai, L.W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley and Sons, New York, 1999.
8.Yoshikawa,T., “Manipulability of Robot Mechanisms”, Int. J. Robot. Res., 4(2) pp.3-9, 1985.
9.Lee, C.-C. and Chou, J.-H., ”Kinematics of A 3-DOF Translational Parallel Mechanism with 3-PRPaR Topology” , ASME, DETC2004-57193, 2004.
10.Callegari, M. and Tarantini, M., ”Kinematic Analysis of a Novel Translational platform”, ASME Trans. J Mechanical Design Vol.125, pp.308-315,2003.
11.李聰慶、邱正弘,“空間3-PRPaR型純平移並聯式機器人”,第六屆全國機構與機器設計學術研討會暨海峽兩岸機構學學術研討會論文集,雲林,pp.241-248,2003.
12.Gosselin, C. M., Kong, X., Foucault, S. and Boney, I. A., “A Fully Decoupled 3-DOF Translational Parallel Mechanism”, Proceedings of The Fourth Chemnitz Parallel Kinematics Seminar, Parallel Kinematic Machines International Conference, pp. 595-610, 2004.
13.劉乙宗,3-PRRRR型純平移並聯式機器人運動及構形分析,國立高雄應用科技大學,碩士論文,2008.
14.江佳朋,3-RRPRR型純平移並聯式機器人運動與構形分析,國立高雄應用科技大學,碩士論文,2008.
15.Vinogradov, I. B., Kobrinski, A. E., Stepanenko, Y. E. and Tibes, L. T., “Details of Kinematics of Manipulators with the Method of Bolumes”, Mekhanika Mashin, In Russian, No.27-28, pp. 5-16., 1971.
16.Kumar, A. V. and Waldron, K. J., “The Workspace of a Mechanical Manipulator”, ASME Mech. Design J. 103(3):665-672, 1981.
17.Grubler, M., Getriebelehre, Springer-Verlag, Berlin, 1917.
18.Lee, C.-C. and Chen, J.-T., “Kinematics of a Pure Translational UPS/3-RPaPaR Parallel Manipulator”, 第七屆全國機構與機器設計學研討會,2006.
19.Merlet, J. P., “Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots”, ASME J. Jan. Des., Vol.128, pp.199-206, 2006.
20.Gosselin, C. and Angeles, J., “A Global Performance Index for the Kinematic Optimization of Robotic Manipulators”, ASME Trans. J., Sep. Des.,Vol.113, pp.220-226,1991.
21.Zhen, D., Huang, Z. and Lu, W., “Performance Analysis and Optimal Design of a 3-DOF 3-PRUR Parallel Mechanism” , ASME J. Mech. Des., Vol.130, 2008
22.Tsai, L. W., “Multi –Degree of Freedom Mechanisms For Machine Tools and the like” , United States Patent, No.5656905, 1995.
23.Clavel, R., “Device for displacing and positioning an element in space”, PCT Patent Application, WO87/03528., 1985.
24.Clavel, R., “Delta a Fast Robot with Parallel Geometry”, Porc. Int. Symp. On Industrial Robots, pp.91-100, 1988.
25.Hervé, J. M. and Sparacino, F., “Structural Synthesis of Parallel Robots Generating Spatial Translation”, Proc. 5th IEEE Int. Conf. on Advanced Robotics, Pisa, Italy, pp.808-813 , 1991.
26.Hervé, J. M., “Dispositif Pour le Deplacement en Translation Spatiale d′un Element dans l′espace en Particuller Pour Robot Mecanique” , French patent no. 9100286, 1991.
27.Hervé, J. M., “Design of parallel Manipulators Vis the Displacement Group”, Proc. the 9th World Congress on the Theory of Machines and Mechanisms, Milano, Italy, pp.2079-2082, 1995
28.Tsai, L. W., Walsh, G. C. and Stamper, R. E., “Kinematics of a Novel three DOF Translational Platform”, Porc. The 1996 IEEE Int. Conf. on Robot. Automat., pp.3446-3451, 1996.
29.Tsai, L. W. and Stamper, R. E., “A Parallel Manipulator with only Translational Degrees of Freedom”, Proc. The 1996 ASME Design Eng. Tech. Conf., Irvine, CA,MECH-1152, 1996.
30.Li, Y. and Xu Q., “Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator”, ASME J. Mech. Des., Vol.128, pp. 729-737, 2006.
31.Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices” , ASME Trans. J. Applied Mechanics, Vol.22, pp.215-221, 1955.
32.Kutzbach, K., “Mechanische Leitungsverzweigung, Maschinenbau,” Der Betreib 8, No.21, pp.710-716, 1929.
33.Gosselin, C., “Determination of the Workspace of 6-Dof Parallel Manipulator”, ASME Journal of Mech. Des., vol. 112, pp. 331-336, 1990.
34.Yang, F.C. and Hang, E. J., “Numerical Analysis of the Kinematic Dexterity of mechanisms”, ASME Journal of Mech. Des., vol.116, pp. 119-126, 1994.
35.Ruggiu, M., “Kinematics Analysis of the CUR Translational Manipulator”, Mechanism and Machine Theory, vol. 43, pp. 1087-1098, 2008.
36.Bonev, I. A. and Ryu, J., “A Geometrical Method for Computing the Constant-Orientation Workspace of 6-PRRS Parallel Manipulators”, Mechanism and Machine Theory, 36(1), pp. 1–13, 2001.
37.Marco, C. and Vincenzo, P.-C., “A Family of 3-DOF Translational Parallel Manipulators”, ASME Trans. J. Mech. Design, Vol.125, pp.302-307, 2003
38.Lee, C.-C. and Hervé, J. M., “Cartesian Parallel Manipulators with Pseudo-Planar Limbs” , ASME J. Mech. Des., Vol.129, No.12, pp.1256-1264, 2007.
39.Tsai, L. W. and Joshi, S., “Kinemaics and Optimization of a Spatial 3-UPU Parallel Manipulator” ,ASME J. Mech. Des. 122(4), pp. 219-229, 2000.
40.Gregorio, R. D. and Parenti-Castelli V., “A Translational 3-DOF Parallel Manipulator, Mobility”, Advances in Robot Kinematics Analysis&Control, j. Lenarcic and M. Husty eds.,pp.49-58, 1998.
41.Uicker, J. J., Denavit, J. and Hartenberg, R. S., “An Iterative Method for the Displacement Analysis of Spatial Mechanism”, ASME Journal of Applied Mechanics, pp.309-314, 1964.
42.邱正弘,Prism型並聯式機器人之誤差模型與分析,國立高雄應用科技大學,碩士論文,2005
43.吳鴻輝,3-PHHH型並聯式機器人之模型製造與位移分析,國立高雄應用科技大學,碩士論文,2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top