(3.238.96.184) 您好!臺灣時間:2021/05/15 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃建國
研究生(外文):Chien-Kuo Huang
論文名稱:微齒輪冷鍛成形之預形設計與實驗
論文名稱(外文):Preform Design and Experiments of the Cold Forging of Micro Gear
指導教授:張朝誠
指導教授(外文):Chao-Cheng Chang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:124
中文關鍵詞:微鍛造微齒輪預形設計田口方法
外文關鍵詞:Micro forgingMicro gearPreform designTaguchi method
相關次數:
  • 被引用被引用:12
  • 點閱點閱:674
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:1
摘要
消費性電子資訊產品與科技玩具等產業朝向微型化發展,使得微型傳動元件需求也隨之增加。微齒輪是此類傳動機構之主要元件,其大量生產技術仍待開發。本文將採用三道次微成形,設計目標在於降低成形負荷、改善材料流動與確保充填效果,並由田口方法預估最佳組合參數,設計一組包含預成形之微齒輪鍛造製程,並製作模具進行微鍛造實驗。

本研究設計一個材質為純銅、模數0.4、齒數8齒、節圓直徑3.6 mm、齒形厚度1mm、壓力角20o、兩側有直徑1.6 mm與長度1mm轉軸之微型正齒輪元件。本研究先以數值模擬搭配田口方法,考慮胚料直徑與預形之幾何特徵為設計變數,以改善材料流動與確保充填為目的,設計微齒輪之鍛造預形。另外,工件與模具表面之摩擦效應影響材料流動與成品品質,也列為田口參數。本研究利用微雙杯擠製實驗,針對工業常用之機油與二硫化鉬為潤滑劑,預估微成形之定剪摩擦因子分別為0.1與0.02。

本研究提出一個以材料流動過程造成工件變形之曲率半徑為可能發生疊料之量化指標,作為田口方法設計微齒輪鍛造預形之依據。經模擬與二次田口分析結果顯示,本文所選用之預形幾何因子,雖不是影響材料流動之主要因子,但可以改善材料流動、降低成形負荷,並確保材料完全充填模穴。利用模擬分析結果所預估之微鍛造預形,設計一組包含三道次之微鍛造齒輪製程,並以微放電加工技術製作一組微模具,進行微鍛造實驗。

研究結果顯示,經由模擬搭配田口方法設計之三道次微鍛造製程,可成功製造微型齒輪,且模擬預估之鍛造力與模穴充填之情形接近實驗結果。
ABSTRACT
In recent years, electronic products, information technological equipments and children’s toys tend to miniaturization. This trend creates a big demand for micro components including micro pins, micro connectors and micro gears. Micro gears which are the essential part of transmission system and may be used in micro products might be fabricated by a machining process. However, the high cost and low production rate of the process inspire researches to develop a new method for manufacturing micro gears.
This research developed a micro-gear manufacturing method using three stages of forging processes. The objectives of the study include reducing forging force, improving material flow and ensuring complete filling. The study used the Taguchi method to design the performs for fabricating 8-teeth micro copper gears with the modulus of 0.4, the pressure angle of 20 degree, the thickness of 1 mm and a rotating shaft with the diameter of 1.6 mm. A commercial software, DEFORM 3D, was employed to simulate forging processes and the Taguchi method was applied to design performs with the consideration of complete die filling. Moreover, the experiments of micro double cup extrusion were carried out to estimate the friction effects in the micro forming process. By using oil and molybdenum disulfide (MoS2), the factors for the constant shear friction model are 0.1 and 0.02 respectively.
This study proposed a method based on calculating the curvature of the front of metal flow for evaluating the level of a potential folding. The estimated levels were then used in the analysis of the Taguchi method for preform design. The study shows that the diameter of the billet and some geometric features are not most significant factors affecting the die filling. However, reducing the load and ensuring the die filling have been achieved and a three-stage forging process of micro gear was developed by using the proposed approach. Finally, the dies for micro forging processes were fabricated by micro electrical discharging machining and the experiments were conducted. The results show that micro gears were successfully produced by the proposed forging process with preforms and the predicted forging loads were in good agreement with the experimental ones.
目錄
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、序論 1
1-1前言 1
1-2文獻回顧 2
1-2-1齒輪鍛造 2
1-2-2摩擦特性研究 4
1-2-3預形設計研究 7
1-3研究動機與目的 8
二、成形理論與分析方法 11
2-1鍛造概論 11
2-1-1鍛造定義 11
2-1-2加工流程圖 12
2-2鍛模設計概論 14
2-2-1鍛模之設計 14
2-2-2鍛件成形設計 14
2-2-3鍛件之預形設計 17
三、田口式品質工程實驗設計方法 19
3-1田口品質工程理論 19
3-1-1品質損失函數 20
3-1-2值交表實驗設計 20
3-1-3信號雜音比之特性 21
3-1-4變異數分析 22
3-2田口方法 25
3-2-1直交表水準參數設定 25
3-2-2一次田口方法 25
3-2-3二次田口方法 25
四、DEFORM模擬與材料實驗 29
4-1DEFORM 3D軟體介紹 29
4-1-1 DEFORM 3D功能介紹 29
4-1-2 DEFORM 3D使用流程 30
4-2材料機械性質 32
4-2-1材料介紹 32
4-2-2圓柱壓縮試驗 33
4-3摩擦效應 36
4-3-1摩擦理論 36
4-3-2潤滑劑 37
4-3-3雙杯擠製實驗 37
4-4微齒輪設計 42
4-5 DEFORM模擬齒輪參數設定 44
五、模具設計與實驗方法 47
5-1模具設計與製作 47
5-2實驗設備 54
5-3實驗步驟 58
5-4實驗參數 60
六、結果與討論 61
6-1田口方法目標量測值定義 61
6-2微齒輪鍛造第一次田口方法之最佳製程參數 77
6-3微齒輪鍛造第二次田口方法之最佳製程參數 81
6-4變異數分析 85
6-5實驗驗證 89
七、結論與建議 100
7-1結論 100
7-2建議 101
參考文獻 102
附錄一:微齒輪鍛造模具總圖 105
附錄二:雙杯擠製模具總圖 119
簡歷 124
參考文獻
[1 ]Zhao, J. and Mates, H., “Effects of process parameters on the micro molding process”, Polymer engineering and science, Singapore, vol.43, pp.1542-1554, 2003.
[2] Konda, K. and Ohga, K., “Precision cold die forging of a ring gear by divided flow method”, International Journal of Machine Tools and Manufacture, vol. 35, No.8, pp.1105-1113, 1995.
[3] Dean, T. A., “The net-shape forming of gears”, Materials and Design, vol.21, pp.271-278, 2000.
[4] Lee, Y. K., Lee, S. R. and Lee, C. H., “Process modification of bevel gear forging using three-dimensional finite element analysis”, Journal of Materials Processing Technology, vol. 113, pp.59-63, 2001.
[5] 徐宏修,應用有限元素分析法於傘齒輪精密鍛造之研究,行政院國家科學委員會專題研究計畫成果報告,2003。
[6] Cai, J., Deana, T. A. and Hub, Z. M., “Alternative die designs in net-shape forging of gears”, Journal of Materials Processing Technology, vol. 150, pp.48-55, 2004.
[7] Kang, G. J., Song, W. J. and Kim, J., “Numerical approach to forging process of a gear with inner cam profile using FEM”, Journal of Materials Processing Technology, vol. 164-165, pp. 1212-1217, 2005 .
[8] Ma, Y., Qin, Y. and Balendra, R., “Forming of hollow gear-shafts with pressure-assisted injection forging(PAIF)”, Journal of Materials Processing Technology, vol. 167, pp. 294-301, 2005.
[9] Tamostu, N. and Osakada, K., “Research and development on precision forging technology in Japan”, Journal of the Chinese society of mechanical engineers, vol. 26, pp.339-346, 2005.
[10] Kim, W. J. and Sa, Y. K., “Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears”, Scripta materialia , vol.54, pp.1391-1395,2006.
[11] 蘇裕翔,微齒輪鍛造預形之設計與實驗,碩士論文,2007。
[12] Hu, C., Wang, K. and Liu, Q., “Study on a new technological scheme for cold forging of spur gears”, Journal of Materials Processing Technology, vol .187-188, pp.600-603, 2007.
[13] 洪嘉駿,以鍛粗加工實驗驗證變分上界限法,碩士論文,2007。
[14] Schroeder, W., and Webster, D. A., "Press Forging Thin Sections : Effect of Friction, Area and Thickness on Pressure Required ", Journal of Applied Mechanics, Vol.16, pp.289-294, 1949.
[15] Kobayashi, S., Oh, S. I., Altan., T., “Metal forming and the finite-element method”, Oxford University Press, pp.32, New York.
[16] Barcellona, A. and Cannizzaro, L., “Validation of Frictional Studies by Double Cup Extrusion Tests in Cold forming”, Annals of the CIRP, Vol. 45, pp. 211-214, 1999.
[17] Tiesler, N., Engel, U. and Geiger, M., “Forming of Microparts-effect of iniaturization on friction”, Proceeding of the 6th ICTP, Vol. II, pp. 889-894, 1999.
[18] Hu, Z. M. and Dean, T. A., “A study of surface topography, fiction and lubricants in metalforming”, International Journal of Mechanical Tool & Manufacture, Vol. 40, pp. 1637-1649, 2000.
[19] Buschhausen, A., Weinmann, K. and Lee, J. Y., “Evaluation of lubrication and friction in cold forging using a double backward-extrusion processing”, Journal of materials processing technology, vol. 33, pp.34-38, 1992
[20] 曾俊發、陳富國,尺寸效應於精微成形之基礎研究 ,碩士論文,2003。
[21] 毛慶中,模具表面形貌對精微鍛粗之摩擦效應,碩士論文,2005。
[22] Gariety, M., Ngaile, G. and Altan, T., “Evaluation of new lubricants without zinc phosphate precoat”, Intemational Journal of Machine Tool & Manufacture, Vol. 47, pp. 673-681, 2007.
[23] Narayanan, R. G.., Gopal, M. and Rajadurai, A., “Influence of Friction in Simple Upsetting and prediction of hardness distribution in a cold forged product” ,Journal of Testing and Evaluation, Vol. 36, No.4 Paper ID JTE101443,2008.
[24] Zhao, G., Wright, E. and Grandhi, R. V., “Computer Aided Preform Design in Forging Using the Inverse Die Contact Tracking Method”, International Journal of Machine Tools and Manufacture, vol. 36, No.7, pp.755-769 ,1995.
[25] Ko, D. C. and Kim, D. H., ”Application of artificial neural network and Taguchi method to perform design in metal forming considering workability”, International journal of machine tools & manufacture, vol.39,pp.771-785, 1999.
[26] Kim, D. J. and Kim, B. M., “Application of Neural Network and FEM for Metal Forming Processes” International Journal of Machine Tools and Manufacture, vol. 40, pp.911-925, 2000.
[27] Choia, J. and Cho, H. Y., “An upper-bound analysis for the forming of spur gears”, Journal of materials processing technology, vol.104, pp.67-73, 2000.
[28] Kim, Y. J. and Naunit, R., “Determination of perform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process”, International journal of mechanical sciences, vol.43, pp.853-870, 2001.
[29] Qin, Y., Ma, Y. and Balendra, R., “Pressurising materials and process design considerations of the Pressure-assisted Injection Forging of thick-walled tubular components”, Journal of Materials Processing Technology, Vol. 150, No. 1-2, pp. 30-39, 2004.
[30] Park, J. J. and Hwang, H. S., “Preform design for precision forging of an asymmetric rib-web type component”, Journal of materials processing technology, vol.187-188, pp.595-599, 2007.
[31] 李榮顯,塑性加工學,台北,三民書局,1986。
[32] 許源泉,鍛造學理論與實習,台北,三民書局, 1990。
[33] 黃新春,塑性加工學,文京圖書公司,1989。
[34] Zhao, G., Wright, E. and Grandhi, R. V., “Computer Aided Preform Design in Forging Using the Inverse Die Contact Tracking Method”, International Journal of Machine Tools and Manufacture, vol. 36 No.7, pp.755-769 ,1995.
[35] 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2000。
[36] Schrader, T., Shirgaokar, M. and Altan, T., “A critical evaluation of the double cup extrusion test for selection of cold forging lubricants”, Joumal of materials Processing Technology, vol.189, pp.36-44, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊