(3.238.173.209) 您好!臺灣時間:2021/05/16 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇賢修
研究生(外文):Hsien-Hsiu Su
論文名稱:厚壁容器多道次冷縮口製程分析與模具最佳化設計
論文名稱(外文):Process analysis and die design optimization for multi-pass cold nosing of thick containers
指導教授:許進忠許進忠引用關係
指導教授(外文):Jinn-Jong Sheu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:167
中文關鍵詞:厚壁容器冷縮口切片法二階曲線模具輪廓設計法二段式Bezier曲線模具輪廓設計法局部退火技術
外文關鍵詞:Cold nosing of thick bottle billetSlab methodConic curve die design methodTwo-segment Bezier curve die design methodLocal annealing technology
相關次數:
  • 被引用被引用:5
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
縮口製程是將一具有開口端之瓶胚擠入適當的成形模具,將原本直線段的圓筒壁身,漸進縮口變形至指定口徑尺寸,而縮口部位外形常為錐型、圓弧型,流線形等等。瓶胚內部體積與整體形狀是透過反擠伸製程,由一衝頭擠壓胚料錠塊而成形。瓶胚縮徑部位的材料變形行為由縮口模具曲面所限制,瓶身外表面形狀由模具成形曲面控制,而瓶身內表面材料流動狀態則自由不受拘束。平順的材料流動行為將增加縮口變形的可行性,然而材料流動性則受制於模具成形面與材料接觸面之間的摩擦行為,瓶胚在縮口變形時,徑向方向的壁厚將隨著縮口行程而增加,但在軸向方向,則可能因為模具與瓶胚接觸介面之潤滑效果不良,導致材料流動不易致使發生軸向挫曲。因此,為了控制材料在縮口變形時的流動趨勢,設計一適當的縮口模具與搭配良好的潤滑條件,以及必要的加工修整在整體的縮口製程設計中佔有重要的角色。
厚壁容器冷縮口製程分析中,假設在材料變形前後,體積不可壓縮,並套用Levy-Mises塑流法則,透過切片法分析原始瓶胚變形至最終產品口徑,提出一解析解以評估頸縮變形的最大縮口率,並提出J.B. Johnson 挫曲修正方程式以評估縮口軸向臨界負荷。透過實驗驗證與有限元素模擬分析,本研究提出創新的二次曲線取代傳統直線設計的成形曲面,應用於圓錐形縮口變形,並運用Bezier曲線設計分段縮口變形法於多曲率圓筒形縮口。
透過最佳化模具設計結果,以及發展局部退火技術,將原本16道次的多曲率縮口製程縮減為3道次,及提出將14道次圓錐形縮口製程降低為3道次的創新製程分析。模具最佳化設計則透過實驗計畫法(Design of Experiment, DOE),以最少的實驗次數和最適當的實驗方法,獲得主要影響製程的參數,並得到最佳的實驗組合 (Design of Experiment, DOE),由結果顯示,本文所提出之創新曲線應用於模具曲面設計,與局部退火技術,不僅可預防瓶胚在縮口變形時,可能發生的側壁橫向挫曲破壞與皺摺,並大量縮減頸縮道次、提高單位產能、降低模具與設備的成本消耗,而產品亦可獲得絕佳的尺寸精度,大大改善傳統製程的缺陷,達到最佳化的厚壁冷縮口製程設計。
Nosing operation is a metal forming process to gradually reduce the open end diameter of a cylindrical or a conical bottle to make a neck zone with specific dimensions. The forming processes in this type of bottle making include cylindrical bottle backward extrusion, nosing operation of neck zone, and internal threading of neck. During the nosing process, forming zone is constrained near the neck one locally. A smooth material flow is very helpful to increase the nosing limit effectively. On the other hand, the friction effect between die and bottle increases the forming load, as a result, the buckling and wrinkling defects of bottle billet occurred. It is essential to design proper die geometry and cope with suitable lubrication to control the material flow, achieve the requirements of the product dimensions and geometry, and avoid buckling and wrinkling defects.
This thesis proposes a slab method for the thick wall bottle nosing simulation. The volume constancy of material and the Levy-Mises flow rule were assumed. A one-step method was developed to analyze the direct forming process from billet bottle to nosed product. An analytical nosing limit was proposed based on the mentioned slab method. The J.B. Johnson buckling rule was modified to be applied to predict the critical forming load of bottle billet. In the aspect of nosing die designs, an innovative conic profile was proposed for the nosing operation of conical bottles, and a two-segment Bezier curve profile was proposed for the nosing operation of cylindrical bottles with multi-curvature neck.
In this thesis, a three-pass die design optimization method and a bottle billet annealing method were proposed. The process number of cylindrical bottle nosing with multi-curvature neck was reduced to three instead of the original number of sixteen. The process number of conical bottle nosing was reduced to three instead of the original number of fourteen. The Design of Experiment (DOE) method was adopted to determine the design parameters of die in each pass. The optimum combination of design factors determines the optimum die geometry of each pass. A high frequency furnace was adopted to do the experiment of billet bottle annealing. Nosing experiments were carried out to test the designed dies. The theoretical predicted results of deformation and the experimental tests were in good agreement. These comparisons verified the proposed die design methods and annealing technologies were not only able to avoid buckling and wrinkling defects but also can reduce the pass numbers to three effectively.
Key words:Cold nosing of thick bottle billet, Slab method, Conic curve die design method, two-segment Bezier curve die design method, local annealing technology
摘要 I
ABSTRACT III
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
一、 緒論 1
1.1. 前言 1
1.2. 縮口成形之相關製程 2
1.3. 塑性加工之力學解析 5
1.4. 文獻回顧 7
1.5. 研究動機與目的 13
二、 分析理論 15
2.1. 切片法 15
2.1.1. 基本假設 15
2.1.2. 極限縮口率 17
2.1.3. 極限縮口道次 23
2.2. 瓶胚縮口挫曲準則 24
2.3. 瓶胚局部退火熱處理 31
2.4. 田口式品質設計法 33
2.4.1. 實驗計畫法 33
2.4.2. 田口式品質設計法 34
2.4.3. 田口實驗計劃方法步驟 36
2.5. 有限元素分析法理論 41
三、 研究方法與實驗步驟 43
3.1. 鋁合金實驗材料 43
3.2. AA6061-F圓柱壓縮實驗 46
3.2.1. AA6061-F圓柱壓縮實驗目的 46
3.2.2. AA6061-F圓柱壓縮實驗方法與步驟 47
3.3. 縮口成形挫曲實驗 49
3.4. 瓶胚局部退火熱處理 51
3.4.1. 中高週波加熱機 51
3.4.2. 瓶胚局部退火熱處理目的 52
3.4.3. 瓶胚局部退火熱處理方法與步驟 53
3.4.4. 硬度量測 57
3.5. 縮口模具最佳化設計與開模 58
3.5.1. 錐形縮口模具設計方法與理論 58
3.5.2. 流線縮口模具設計方法與理論 63
3.6. 瓶胚縮口成形試驗 69
3.7. 瓶胚縮口成形理論行程 72
3.8. 50噸萬能試驗機 76
四、 縮口成形製程分析與模擬方法 77
4.1. 錐形瓶縮口製程設計與分析模擬 77
4.1.1. 錐形瓶粗胚反擠伸製程設計與模擬模型 79
4.1.2. 錐形瓶反擠伸瓶胚引薄製程設計與模擬模型 81
4.1.3. 錐形瓶三道次縮口製程設計與模擬模型 82
4.2. 流線形瓶縮口製程設計與分析模擬 86
4.2.1. 流線形瓶粗胚反擠伸製程分析模擬模型 88
4.2.2. 流線形瓶三道次縮口製程分析模擬模型 90
五、 結果與討論 94
5.1. 切片法理論分析結果 94
5.2. 圓柱壓縮實驗結果 96
5.3. 縮口成形挫曲實驗 100
5.4. 瓶胚局部退火結果 103
5.4.1. 中高週波退火熱處理製程實驗結果 103
5.4.2. 局部退火軟化結果與硬度應變轉換式 105
5.5. 錐形瓶縮口製程分析設計結果 107
5.5.1. 瓶胚反擠伸與引薄製程分析模擬 107
5.5.2. 二階曲線錐形瓶第一道次縮口模具最佳化分析結果 110
5.5.3. 錐形瓶三道次縮口成形製程分析結果 112
5.6. 流線形瓶縮口製程分析設計結果 116
5.6.1. 瓶胚反擠伸製程分析模擬 116
5.6.2. 流線形瓶三道次縮口成形製程分析結果 117
5.7. 縮口實驗模具 120
5.8. 縮口實驗成形結果 126
5.8.1. 局部熱處理效果之第一道次縮口成形結果 127
5.8.2. 縮口局部熱處理實驗成形結果 129
六、 結論 136
6.1. 極限縮口率與縮口區厚度分佈 136
6.2. 塑流應力模型 (FLOW STRESS MODEL) 136
6.3. 縮口成形挫曲負荷預估 (J.B. JOHNSON 挫曲修正方程式) 136
6.4. 局部退火熱處理 (弛力退火製程) 136
6.5. 三道次錐形瓶縮口製程設計與分析 (二階曲線模具輪廓) 136
6.6. 三道次流線形瓶縮口製程設計與分析 (BEZIER曲線局部特徵縮口) 137
6.7. 流線形瓶三道次縮口實驗討論 137
七、 未來展望 138
參考文獻 139
附錄一 實驗設備 144
附錄二 軟硬體版本及軟體運算時間 145
附錄三 50噸萬能試驗機校正報告 147
個人簡歷 151
【1】李榮顯,1986,塑性加工學,三民書局,pp.66-77,台北。
【2】D. F. Chang, 1998, “An analytical model of the ironing process including redundant work effect”, Journal of Materials Processing Technology, vol. 75, pp. 253-258.
【3】A. S. Wifi, M. N. Shatla, A. Abdel-Hamid, 1998, “An optimum-curved die profile for the hot forward rod extrusion process”, Journal of Materials Processing Technology, vol. 73, pp. 97-107.
【4】M. A. Sheikh, R.R. Palavilayil, 2006, “An assessment of finite element software for application to the roll-forming process”,Journal of Materials Processing Technology, vol. 180, pp. 221-232.
【5】P. Xue, T. X. Yu, E. Chu, 2001, “An energy approach for predicting springback of metal sheets after double-curvature forming, Part I : Axisymmetirc stamping”, International Journal of Mechanical Sciences, vol. 43, pp. 1893-1914.
【6】P. Xue, T. X. Yu, E. Chu, 2001, “An energy approach for predicting springback of metal sheets after double-curvature forming, Part I : Unequal double-curvature forming”, International Journal of Mechanical Sciences, vol. 43, pp. 1915-1924.
【7】M. Strano, T. Altan, 2004, “An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications”, Journal of Materials Processing Technology, vol. 146, pp. 92-96.
【8】C. Sun, S. Li, B. Wang, 2000, “Analysis of the ironing of a BJ-type constant velocity joint outer race with the upper bound element method”, Journal of Materials Processing Technology, vol. 100, pp. 209-213.
【9】N. R. Chitkara, A. Aleem, 2001, “Axi-symmetric tube extrusion/piercing using die-mandrel combinations: some experiments and a generalised upper bound analysis”, International Journal of Mechanical Science, vol. 43, pp. 1685-1709.
【10】A. Alfozan, J. S. Gunasekera, 2002, “Design of profile ring rolling by backward simulation using upper bound element technique (UBET)”, Journal of Manufacturing Processes, vol. 4, no. 2, pp. 97-108.
【11】A. Ghaei, A. K. Taheri, M. R. Movahhedy, 2006, “A new upper bound solution for analysis of the radial forging process”, International Journal of Mechanical Sciences, vol. 48, pp. 1264-1272.
【12】H. W. Wagener, J. Haats, 1996, “On-line annealing in cold forging”, Journal of Materials Processing Technology, vol. 56, pp. 354-363.
【13】Y. Y. Li, W. W. Zhang, J. Fei, D. T. Zhang, W. P. Chen, 2005, “Heat treatment of 2024/3003 gradient composite and diffusion behavior of the alloying elements”, Materials Science & Engineering, vol. A391, pp. 124-130.
【14】M. M. Benal, H. K. Shivanand, 2006, “Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites”, Materials Science & Engineering, vol. A435-436, pp. 745-749.
【15】L. Sadok, J. Kusiak, M. Paćko, M. Rumiński, 1996, “State of strain in the tube sinking process”, Journal of Materials Processing Technology, vol. 60, pp. 161-166.
【16】陳啟榮,2003,AL6061鋁合金與AZ61鎂合金凸緣鍛造成形之研究,國立台灣科技大學機械工程研究所,碩士論文。
【17】Y. W. Tham, M. W. Fu, H. H. Hng, M. S. Yong, K. B. Lim, 2007, “Study of deformation homogeneity in the multi-pass equal channel angular extrusion process”, Journal of Materials Processing Technology, vol. 192-193, pp. 121-127.
【18】T. Altan, S. Kobayashi, S. I. Oh, 1989, Metal Forming and the Finite Element Method, Oxford University Press, pp.32, New York.
【19】Z. Gronostajski, 2000, “The constitutive equations for FEM analysis”, Journal of Materials Processing Technology, vol. 106, pp. 40-44.
【20】Z. M. Hu, T. A. Dean, 2000, “A study of surface topography, friction and lubricants in metalforming”, International Journal of MACHINE TOOLS & MANUFACTURE, vol. 40, pp. 1637-1649.
【21】D. R. Hayhurst, M. W. Chan, 2005, “Determination of friction models for metallicdie-workpiece interfaces”, International Journal of Mechanical Sciences, vol. 47, pp. 1-25.
【22】B. Bennani, N. Bay, 1996, “Limits of lubrication in backward can extrusion: analysis by the finite-element method and physical modeling experiments”, Journal of Materials Processing Technology, vol. 61, pp. 275-286.
【23】E. Z. Kim, S. I. Oh, Y. S. Lee, K. H. Na, 2008, “Backward can extrusion of ultra-fine-grained bulk Al-Mg alloy fabricated by cryomilling and hydrostatic extrusion”, Journal of Materials Processing Technology, vol. 201, pp. 163-167.
【24】Z. Y. Cai, M. Z. Li, 2005, “Finite element simulation of multi-point sheet forming process based on implicit scheme”, Journal of Materials Processing Technology, vol. 161, pp. 449-455.
【25】K. Abrinia, H. R. Farahmand, 2008, “An upper bound analysis for the reshaping of thick tubes with experimental verification”, International Journal of Mechanical Sciences, vol. 50, pp. 342-358.
【26】S. Kobayashi, 1983, “Approximate solution for preform design in shell nosing”, International Journal of Machine Tool Design, vol. 23, pp. 111-122.
【27】R. Hebdzyński, S. Kajzer, R. Kozik, 1997, “Forging on the four-lever arms swaging machines”, Journal of Materials Processing Technology, vol. 64, pp. 199-206.
【28】F. Knap, R. Kruzel, M. Krakowiak, 2003, “Conical pipe envelope formation process”, Journal of Materials Processing Technology, vol. 139, pp. 164-169.
【29】S. Yoshihara, B. Mac Donald, T. Hasegawa, M. Kawahara, H. Yamamoto, 2004, “Design improvement of spin forming of magnesium alloy tubes using finite element”, Journal of Materials Processing Technology, vol. 153-154, pp. 816-820.
【30】C. T. Kwan, 2003, “An analysis of the eccentric nosing process of metal tubes”, Journal of Materials Processing Technology, vol. 140, pp. 530-534.
【31】Y. H. Lu, 2005, “Study of preform and loading rate in the tube nosing process by spherical die”, Computer methods in applied mechanics and engineering, vol. 194, pp. 2839-2858.
【32】N. Akkus, M. Kawahara, 2006, “An experimental and analytical study on dome forming of seamless Al tube by spinning process”, Journal of Materials Processing Technology, vol. 173, pp. 145-150.
【33】M. L. Alves, B. P. P. Almeida, P. A. R. Rosa, P. A. F. Martins, 2006, “End forming of thin-walled tubes”, Journal of Materials Processing Technology, vol. 177, pp. 183-187.
【34】黃永明,曹永偉,2008,“圓錐形工具於複合金屬管端擴口及縮口成形製程之研究”,2008 精密機械與製造科技研討會論文集-PMMT 2008。
【35】方聖豪,2008,應用局部變形拘束法於高壓鋁合金罐縮口模具設計與製程分析,國立高雄應用科技大學模具工程研究所,碩士論文。
【36】M. Schűnemann, M. A. Ahmetoglu, T. Altan, 1996, “Prediction of process conditions in drawing and ironing of cans”, Journal of Materials Processing Technology, vol. 59, pp. 1-9.
【37】D. Delarbre, P. Montmitonnet, 1999, “Experimental and numerical study of the ironing of stainless steel cups”, Journal of Materials Processing Technology, vol. 91, pp. 95-104.
【38】M. Koç, V. Vazquez, T. Witulski, T. Altan, 1996, “Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys”, Journal of Materials Processing Technology, vol. 59, pp. 106-112.
【39】Z. Wang, K. Dohda, Y. Jeong, 2001, “FEM simulation of surface smoothing in the ironing process”, Journal of Materials Processing Technology, vol. 113, pp. 705-709.
【40】H. K. Kim, S. K. Hong, 2007, “FEM-based optimum design of multi-stage deep drawing process of molybdenum sheet”, Journal of Materials Processing Technology, vol. 184, pp. 354-362.
【41】中國機械工程學會,2003,中國模具設計大典第四卷,江西科學技術出版社,pp. 860-863,北京。
【42】尤春風,2001,機械元件設計,滄海書局,pp.415-443,台北。
【43】黃振賢,1990,金屬熱處理,文京圖書,pp.101-113,台北。
【44】張森景,1991,金屬模具之熱處理及表面硬化技術,全華科技圖書,pp.16-17,台北。
【45】蕭勝元,2007,金屬之加工軟化與退火硬化,大同大學材料工程研究所,碩士論文。
【46】MATWEB, http://www.matweb.com/
【47】T. Altan, S. Kobayashi, S. I. Oh, 1989, Metal Forming and the Finite-Element Method, pp.83-89, Oxford University Press
【48】ASTM Standard, 2000, E9-89a Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature.
【49】Rogers, Adams, 1990, Mathematical Element For Computer Graphics, McGraw-Hill Publishing Company, pp.289-305, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top