(3.238.99.243) 您好!臺灣時間:2021/05/15 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:梁文鍾
研究生(外文):WEN-CHUNG LIANG
論文名稱:具薄翼實心散熱片熱擠型窗口模設計與製程模擬
論文名稱(外文):Port hole hot extrusion die design and process simulation for solid heat sink with thin fins
指導教授:許進忠許進忠引用關係
指導教授(外文):JINN-JONG SHEU
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:123
中文關鍵詞:薄翼散熱鰭片窗口模熱擠型承面設計
外文關鍵詞:Fin-type Heat sinkPorthole Extrusion DieHot ExtrusionDie Bearing Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
傳統擠型產業期以生產鋁門窗、管材、棒材及結構用型材等民生用品為主,對於品質要求不高,且價格及利潤低。國內擠型廠之模具設計能力不足,大多依賴經驗設計,由於缺乏對擠型製程之材料塑性流動分析能力,模具設計時無法掌握及控制材料流動,導致擠型品有彎曲、扭曲等變形發生,因而必須經由多次試模及修模來克服設計的缺失,也拉長了模具設計及製造時間週期,延遲了生產時程。為了適應少量多樣的市場需求,必須減少修模次數、避免試誤法及經驗法在設計模具上的時間浪費,特別是在生產尺寸特徵小而品質要求較高的電子相關產品時,更必須有效提升擠伸模擬分析能力,以建立模具與製程設計最佳準則。
本研究之散熱片為具有薄翼特徵之實心型鰭片,在擠製生產過程中,需控制適當之胚料加熱溫度、擠伸速度,並設計良好之擠型模具,以得到良好之擠製品。因本產品同時具有實心與薄翼特徵,擠型時之內外速度差異太大,無法使用一般常用之實心擠型模具設計,本文提出一具有特殊長度心軸設計之擠型模具,配合模具承面長度變化,以控制擠型品材料之內外流動速度。本文使用有限元素分析法模擬材料在模具內部流動狀態,探討製程及模具設計因子之影響,討論擠伸速度、胚料溫度及心軸長度對擠型負荷及產品空孔現象,並以擠製實驗來驗證本研究之設計。同時也透過德國擠型技術協會(Benchmark Extrusion)所提供之L型擠型模具實驗結果數據,進行驗證擠型分析模擬所需設定參數之準確性。具有薄翼特徵之實心型散熱片熱擠型實驗結果證明心軸可以有效減少中央與薄翼處之流速差,但因薄翼尺寸較小,模具容易損壞,必需再加以研究。
Conventionally, the major products of aluminum extrusion product makers are windows and doors, tubes, rods and structures. The requirements of product quality are not critical, the price and profit are also very low. The die design technology of the local extrusion product makers is still based on experience and try-out method. Due to insufficient knowledge of the plastic analysis of the extrusion process, the material flow can not be considered and controlled during the die design stage, as a result, distortion or the bending defects occurred frequently during the extrusion process. Therefore, lot amounts of experiment and the die amendments are required to fix the poor design results. In such condition, the lead time of die design to extrusion production is increased. In order to meet the market requirements of low volume and high variety, the die amendment times and the trial-and-error process must be reduced if not avoidable. To produce the high quality and dimension precision of electronic products, the process analysis ability must be improved to establish the optimal criteria of the die and process designs.

A hot extruded fin-type cooling part was studied in this research. The parameters of the hot extrusion process, such as the temperature of the billet and the ram speed, should be controlled properly and coped with well designed die geometry to obtain the sound extruded product (called extrudate). The thin-fin features around the solid center of heat sink result in a large velocity difference from center to the surface of product. A porthole die design with the cylindrical mandrel was proposed to cope with the bearing length in order to balance the velocity distribution of material flow. The finite element method was adopted to simulate the extrusion process and study the effects of die design parameters. The extrusion speed, the billet temperature, the bearing length, and the length of mandrel were studied in terms of the extrusion load and the central burst defect. Extrusion experiments were carried out to validate the proposed design and analysis methods. A standard L type extrusion benchmark was announced by the Germany Benchmark Extrusion Workshop, which was used to validate the accuracy of the simulation. The hot extrusion experiment results of the fin-type heat sink showed the round mandrel was able to reduce the velocity variation of the fin and the center areas dramatically. The extrusion die was frequently damaged in the thin-fin area due to the small die features. Further research is required to solve the above mentioned problem.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
符號說明 xii
一、 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 CPU散熱鰭片 3
1.2.2 擠型模具設計研究 4
1.2.3 窗口模設計研究 5
1.2.4 理論解析 6
1.3 擠型模具分類 8
1.3.1 依加工溫度分類 12
1.3.2 依產品及壓桿(RAM)運動方向分類 14
1.3.3 依產品形狀分類 18
1.3.4 依模具結構形狀分類 22
1.4 研究動機及目的 26
二、 擠型製程與分析 28
2.1 擠型製程 28
2.2 擠型製程參數 30
2.3 擠型製品之缺陷 32
2.4 擠型分析理論 33
2.5 CAE分析模型與流程 36
2.5.1 DEFORM簡介 36
2.5.2 前處理(Pre-processor) 36
2.5.3 模擬解析(Simulation) 38
2.5.4 後處理(Post-processor) 38
三、 擠型模具設計與製造 39
3.1 擠型模具元件 39
3.2 模具設計方法 42
3.2.1 公模-心軸設計方法 43
3.2.2 母模-承面設計方法 45
3.3 模具設計參數分析 48
3.3.1 模具承面長度設計方法 49
3.3.2 心軸長度設計 50
3.3.3 心軸形狀(直徑)設計 52
3.4 鋁擠型實驗方法 53
3.4.1 鋁擠型材料 53
3.4.2 擠型實驗設備 55
3.4.3 擠型實驗步驟 56
3.5 太陽花散熱鰭片擠型模具 61
3.5.1 太陽花散熱擠製鰭片幾何定義 61
3.5.2 擠型模具設計(一) 62
3.5.3 擠型模具設計(二) 65
四、 熱擠型之製程模擬 69
4.1 分析模擬技術驗證 69
4.1.1 具L形模具CAD設計 69
4.1.2 L形擠型模具製程設計 72
4.1.3 分析模型網格細化技術 76
4.2 具薄翼特徵之鰭片熱擠型分析模擬 78
4.2.1 製程模擬技術 78
4.2.2 製程模擬參數 79
4.2.3 分析模型網格細化技術 81
五、 結果與討論 84
5.1 分析模擬技術驗證結果 84
5.1.1 模擬與實驗之負荷比較 84
5.1.2 模擬與實驗之幾何比較 88
5.2 散熱鰭片模具設計分析結果 93
5.2.1 承面長度設計 93
5.2.2 心軸長度設計 98
5.2.3 心軸直徑設計 105
5.3 太陽花散熱鰭片擠型模具實驗結果 110
5.3.1 擠型模具設計(一)-實驗結果 110
5.3.2 擠型模具設計(二)-實驗結果 112
六、 結論與建議 115
6.1 Benchmark Extrusion 實驗與模擬驗證結果 115
6.2 承面長度設計 115
6.3 心軸長度設計 115
6.4 心軸直徑設計 115
6.5 實驗與模擬結果比較 115
七、 未來展望 116
參考文獻 117
附錄一 鋁合金性狀命名法 120
附錄二 分析電腦配備與時間 121
個人簡歷 124
[1].經濟部技術處 產業技術知識服務計畫(ITIS):2007年我國鋁工業回顧與展望http://www.itis.org.tw/
[2].葉時行,2001年,散熱基座的熱傳性能分析,國立交通大學機械研究所,碩士論文。
[3].陳賀振,2002年,CPU散熱片擠製之模具設計及有限元素分析,國立中山大學機械與機電工程研究所,碩士論文。
[4].張志新,2003年,放射狀鰭片散熱器之數值模擬與參數探討,國立台灣科技大學機械研究所,碩士論文。
[5].Fu-She Jan, Chin-Tarn Kwan, 2005, “An alalysis of the extrusion process of the straight-fin heat sink in a computer”, Int J Adv Manuf Technol, Vol.26, pp.978-982.
[6].Y.M. Hwang, C. Y. Shen, 2008, “Analysis of plastic flow and die design during extrusion of CPU heat sinks”, Journal of Materials Processing Technology, pp. I74-I78.
[7].Chin-Tarn Kwan, Fu-She Jan, Wen-Chung Lee, 2008, “An optimum die fillet design for minimizing the difference in extruded fin lengths of straight-fin heat sink extrusion”, Journal of Materials Processing Technology, Vol. 20I, pp.I45-I49.
[8].http://www.enertron-inc.com/enertron-industries/laptop-computers.php
[9].Bhavin V. Mehta, Ibrahim AI-Zkeri, Jay S. Gunasekera, Arjaan Buijk, 2001, ”3D flow analysis inside shear and streamlined extrusion dies for feeder plate design”, Journal of Materials Processing Technology, Vol.113, pp.93-97.
[10].黃永茂、林宜宏,2008,”3C產品鋁擠形加工之研究”,2008精密機械與製造科技研討會論文集-PMMT 2008,K01-01。
[11].Jinn-Jong Sheu, Cheng-Hsin Lee, Ping-Hsun Tsai, 2008, “Extrusion Die Design for a Thin Plate Product with round and square rib features”, 2008全國精密製造研討會-SME 2008。
[12].Fuh-Kuo Chen, Wen-Chan Chuang, Shan Torng, 2008, “Finite element analysis of multi-hole extrusion of aluminum-alloy tubes”, Journal of Materials Processing Technology, Vol. 20I, pp.I50-I55.
[13].Gang Fang, Jie Zhou, Jurek Duszczyk, 2009, “FEM simulation of aluminium extrusion through two-hole multi-step pocket dies”, Journal of Materials Processing Technology, Vol. 209, pp.I891-I900.
[14].Chao Lin, Rajesh S. Ransing, 2009, “An innovative extrusion die layout design approach for single-hole dies”, Journal of Materials Processing Technology, Vol.209, pp.3416-3425.
[15].H.H. Jo, S.K. Lee, S.B. Lee, B.M. Kim, 2002, “Prediction of welding pressure in the non-steady state porthole die extrusion of Al7003 tubes”, International Journal of Machine Tools & Manufacture, Vol.22, pp.753-759.
[16].K.J. Kim, C.H. Lee, D.Y. Yang, 2002, “Investigation into the improvement of welding strength in three-dimensional extrusion of tubes using porthole dies, Journal of Material Processing Technology, Vol. 130–131, pp. 426-431.
[17].黎琇瑩,,2002年,窗形模鋁擠型之三維有限元素分析與製程參數研究,國立成功大學機械研究所,碩士論文。
[18].Jung Min Lee, Byung Min Kim b, Chung Gil Kang, 2005, “Effects of chamber shapes of porthole die on elastic deformation and extrusion process in condenser tube extrusion”, Materials and Design, Vol.26, pp.327-336.
[19].H.H. Jo, S.K. Lee, C.S. Jung, B.M. Kim, 2006, “A non-steady state FE analysis of Al tubes hot extrusion by a porthole die”, Journal of Material Processing Technology, Vol. 173, pp.223-221.
[20].Wu Xianghong, Zhao Guogun, Luan Yiguo, Ma Xinwu, 2006, “Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process”, Materials Science and Engineering A, Vol. 435-436, pp. 266-274.
[21].許進忠,1991年,”金屬擠伸模具與製程之電腦輔助最佳化設計”,國立成功大學機械工程系,博士論文。
[22].H.J. Park, K.H. Na, N.S. Cho, Y.S. Lee, S.W. Kim, 1997, “A study of the hydrostatic extrusion of copper-clad aluminium tube”, Journal of Material Processing Technology, Vol. 67, pp. 24-28.
[23].M.H. Paydar, M. Reihanian, R. Ebranimi, T.A. Dean, M.M. Moshksar, 2008, “An upper-bound approach for equal channel angular extrusion with circular cross-section”, Journal of Materials Processing Technology, Vol.I98, pp.48-53.
[24].R. Ebrahimi, M. Reihanian, M. Kanaani, M.M. Moshksar, 2008, ”An upper-bound analysis of the tube extrusion process”, Journal of Materials Processing Technology, Vol. I99, pp.2I4-220.
[25].M.K. Sinha, S.Deb, U.S. Dixit, 2009, “Design of a multi-hole extrusion process”, Material and Design, Materials and Design, Vol. 30, pp.330-334.
[26].李榮顯,1986,塑性加工學,三民書局,pp.243-269。
[27].林昇立,1991,塑性加工學,三民書局,pp.442-460。
[28].Taylan Altan, 2004, COLD AND HOT FORGING-Fundamentals and Applications, pp. 237-246.
[29].黃振賢,1985,金屬熱處理,文京圖書,pp.544-554。
[30].王木琴,1998,機械材料,台灣復文興業股份有限公司,pp.473-493。
[31].MATWEB, http://www.matweb.com/
[32].德國擠型技術協會(Benchmark Extrusion )
http://diemtech.ing.unibo.it/extrusion07/en/benchmark.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top