(3.210.184.142) 您好!臺灣時間:2021/05/13 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李政昕
研究生(外文):Cheng-Hsin Lee
論文名稱:整合能量法與影像處理技術於鈑金異向性預測
論文名稱(外文):Anisotropy prediction of sheet metal with integrated energy method and image processing technology
指導教授:許進忠許進忠引用關係
指導教授(外文):Jinn-Jong Sheu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:材料異向性影像處理應變能量法圓杯凸耳
外文關鍵詞:anisotropic modelimage processing technologyenergy methodcup earring
相關次數:
  • 被引用被引用:2
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的在建立材料異向性模式,以應變能量分析法為基礎,預測具凸緣引伸杯胚料應變分佈及杯緣形狀輪廓。再以引伸實驗及影像處理技術,量測成形後應變分佈及杯緣形狀輪廓,以驗證應變能量分析法及材料異向性模式。引伸凸耳輪廓曲線與材料異向性曲線有直接關聯性,經由凸耳輪廓曲線與異向性曲線之相似性關係,以能量法計算成品杯緣外形決定適當之異向性模式。

本文提出Bezier曲線異向性模式,考慮多角度方向異向性,從0°到90°以每15°為一單位,導入七個角度的異向性R值,建立角度與R值之函數關係。在能量分析法上,假設鈑料為不可壓縮及具有異向性,以一步成形分析原始胚料在引伸後之材料應變分佈,將具角度連續性之多異向性模式導入應變能量法,以應變能量最小化得到最接近之徑向應變分佈。本研究開發數位影像量測系統,整合CCD影像平台架構及所開發之影像處理程式,以非接觸方式量測蝕刻圓形網格之具凸緣圓杯引伸胚料,利用數學迴歸找出主應變與次應變。


本文所發展之Bezier曲線異向性模式,可平順擬合異向性實驗數據,與具凸緣引伸杯緣輪廓也具有相似性。能量法分析結果可有效及快速預測引伸成形應變分佈,與有限元素分析結果比較也有一致的趨勢。本研究提出之能量法未考慮摩擦及壓料力,因此會低估應變,未來仍需考慮摩擦及壓料力,並以疊代法修正多角度異向性模式,才有可能以具凸緣引伸杯引伸成形實驗建立異向性模式及模擬成形過程。
In this thesis, an anisotropic material model was proposed to cope with the energy method for the strain distribution and edge profile of a cylindrical cup drawing. Drawing experiments, and image measurements based on the image processing technology were carried out to obtain the real strain distribution and the edge profile of drawn specimen for the validation of the developed energy method and the material anisotropic model. The edge profile of the drawn cup is closely related to the anisotropic characteristic of material directly. The proper anisotropic model should be able to cope with the energy method to predict the correct edge profile.
A Bezier-type anisotropic model was proposed assuming that the anisotropic value ( R ) of material should be changed from angle to angle with respect to the rolling direction. Seven R values varied from 0 to 90 degrees with respect to the sheet rolling direction were measurement and input to establish the Bezier curve of anisotropic model. Sheet blank was assumed to be anisotropic and incompressible. The one-step forming process analysis was adopted in the proposed energy method and the multi-angle anisotropic model was considered for the calculation of strains. The strain distributions were determined via the minimization process of the total deformation energy. An image processing program was developed to get and analyze the images obtained from the established CCD platform. Circle grids were etched on the blank and were measured via the image processing technology after drawing tests, the major and the minor strains of deformed circle images were calculated using the regressing technology.
The proposed Bezier-type anisotropic model was able to fit the anisotropic data measured by tensile tests and was similar to the edge profile of the drawn cylindrical cup. The strain distributions of cylindrical cup drawing process were able to be predicted effectively and quickly by the proposed and were in good agreement with the predicted tendency of FEM simulation. The friction effect and the pad force were not considered in the proposed energy method; as a result the predicted strains were underestimated. In the future, the friction effect and the pad force should be considered in the energy method and the iteration process should be required to find a more precise Bezier curve of the anisotropic model. The anisotropic model of material will be able to be established automatically based on the more precise energy model and a cylindrical cup drawing test.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
一、 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 鈑金成形分析 2
1.2.2 鈑金材料異向性 2
1.2.3 鈑金引伸凸耳現象 4
1.2.4 影像處理技術 5
1.3 研究動機與目的 7
二、 基本理論 8
2.1 引伸製程與成形分析 8
2.1.1 引伸模具設計 8
2.2 加入材料異向性之應變能量分析法 12
2.2.1 板金材料異向性. 12
2.2.2 異向性模式理論 13
2.2.3 薄膜理論 14
2.2.4 考慮異向性之圓杯引伸應變能量分析法 15
2.2.5 數值最佳化理論 28
2.3 Bezier曲線理論 30
2.4 影像處理技術理論 32
2.4.1 影像處理技術 32
2.4.2 影像校正與橢圓網格量測系統 34
2.5 MIL影像函式庫介紹與說明 36
2.5.1 Active MIL軟體概述 36
2.5.2 Active MIL控制元件介紹 37
2.6 材料試驗理論 39
三、 研究方法與流程 41
3.1 材料性質試驗 (JIS 13A) 42
3.1.1 異向性數值 42
3.1.2 異向性與材料角度關係式 46
3.2 引伸成形凸耳輪廓預測 47
3.2.1 圓杯凸耳輪廓搜尋方法 47
3.2.2 影像處理量測 48
3.3 圓杯引伸成形分析 49
3.3.1 應變能量法之成形分析程式設計 49
3.3.2 有限元素之分析流程 52
3.4 實驗規劃 55
3.4.1 圓形胚料銑削 55
3.4.2 網格蝕刻 58
3.4.3 圓杯引伸實驗 60
3.4.4 網格應變量測 63
四、 結果與討論 64
4.1 材料性質試驗結果 64
4.1.1 鈑金拉伸試驗之材料性質結果 64
4.2 異向性模式建立結果 66
4.2.1 異向性模式建立 66
4.2.2 異向性曲線擬合誤差值計算結果 68
4.3 圓杯引伸成形分析與影像處理量測結果 70
4.3.1 具凸緣圓杯引伸應變能量法與有限元素分析結果 70
4.3.1.1 平均異向性圓杯引伸分析結果 71
4.3.1.2 平面異向性圓杯引伸分析結果 74
4.3.2 圓杯影像量測結果 76
4.3.2.1 AL-5052引伸杯影像量測結果(沖頭接觸面) 81
4.3.2.2 SPCC引伸杯影像量測結果(沖頭接觸面) 83
4.3.2.3 引伸杯凸耳尋邊結果 85
五、 結論 86
5.1 材料性質建立 86
5.2 異向性模式 86
5.3 能量法理論分析與影像處理量測 86
六、 未來展望 88
參考文獻 89
附錄 92
附錄一、 軟硬體版本及配備 92
附錄二、 實驗設備詳細規格說明 93
附錄三、 影像處理網格量測資料 96
簡歷 116
[1]J.W. Yoon, D.Y. Yang, K. Chung, F. Barlat, 1999, “A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming”, International Journal of Plasticity, Vol. 15, pp. 35-67
[2]P. Xue, T. X. Yu, Edmund Chu, 1999, “Theoretical prediction of the springback of metal sheets after a double-curvature forming operation”, Journal of Materials Processing Technology, Vol. 89-90, pp. 65-71
[3]P. Xue, T. X. Yu, Edmund Chu, 2001, “An energy approach for predicting springback of metal sheets after double-curvature forming, Part I : axisymmetric stamping”, International Journal of Mechanical Sciences, Vol. 43, pp. 1893-1914
[4]P. Xue, T. X. Yu, Edmund Chu, 2001, “An energy approach for predicting springback of metal sheets after double-curvature forming, Part II : Unequal double-curvature forming”, International Journal of Mechanical Sciences, Vol. 43, pp. 1915-1924
[5]林瑞彰, 2003, “管材之成形極限研究”, 國立中山大學機械與機電工程研究所, 碩士論文
[6]黃庭彬, 2003, 鎂合金與不銹鋼板材溫間成形特性之研究, 國立臺灣大學機械工程學研究所, 碩士論文
[7]J. Danckert, K.B. Nielsen, 1996, “Determination of the plastic anisotropy r in sheet metal using automatic tensile test equipment”, Journal of Materials Processing Technology, Vol. 73, pp.276-280
[8]D.W.A. Rees, 1997, “A tensor function for the R-value of sheet metal” Elsevier Science Inc
[9]Lumin Geng, R.H.Wagoner, 2002, “Role of plastic anisotropy and its evolution on springback”, International Journal of Mechanical Sciences, Vol. 44, pp. 123-148
[10]Weilong Hu, Z.R. Wang, 2002, “Anisotropic characteristics of metal and basic selecting rules with different sheet metal forming”, Journal of Materials Processing Technology, Vol. 127, pp. 374-381
[11]F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, 2003, “Plane stress yield function for aluminum alloy sheets—part I: theory”, International Journal of Plasticity, Vol.19, pp. 1297-1319
[12]J.W. Yoon, F. Barlat, R.E. Dick, K. Chung, T.J. Kang, 2004, “Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation”, International Journal of Plasticity, Vol.20, pp. 495-522
[13]F. Bron, J. Besson, , 2004, “A yield function for anisotropic materials Application to aluminum alloys”, International Journal of Plasticity, Vol. 20, pp. 937-963
[14]F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, 2005, “Linear transfomation-based anisotropic yield functions”, International Journal of Plasticity, Vol. 21, pp. 1009-1039
[15]A. Chamanfar, R. Mahmudi, 2005, “Compensation of elastic strains in the determination of plastic strain ratio (R) in sheet metals”, Materials Science and Engineering A, Vol. 397, pp. 153-156
[16]H. Vegter, A.H. van den Boogaard, 2006, “A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states”, International Journal of Plasticity, Vol. 22, pp. 557-580
[17]張宏誌, 2007, 應用能量法於圓杯深引伸成形最佳化胚料設計與雙曲率曲面衝壓成形彈回預測, 國立高雄應用科技大學模具工程系碩士班, 碩士論文
[18]張國緯, 2008, 整合多項式型態異向性模式之能量法於圓杯引伸成形分析, 國立高雄應用科技大學模具工程系碩士班, 碩士論文
[19]P. Hu, Y.Q. Liu, J.C. Wang, 2001, “Numerical study of the flange earring of deep-drawing sheets with stronger anisotropy”, International Journal of Mechanical Sciences, Vol. 43, pp. 279-296
[20]J.W. Yoon, S.H. Hong, 2006, “Modeling of aluminum alloy sheets based on new anisotropic yield functions”, Journal of Materials Processing Technology, Vol. 177, pp. 134-137
[21]J.W. Yoon, F. Barlat, R.E. Dick, M.E. Karabin, 2006, “Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function”, International Journal of Plasticity, Vol. 22, pp. 174-193
[22]O. Engler, J. Hirsch, 2007, “Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups”, Materials Science and Engineering A, Vol. 452–453, pp. 640–651
[23]A. Agrawal, N. Venkata Reddy, P.M. Dixit, 2008, “Optimal blank shape prediction considering sheet thickness variation: An upper bound approach”, Vol. 196, pp. 249-258
[24]Q.-C. Hsu, 2003, “Comparison of different analysis models to measure plastic strains on sheet metal forming parts by digital image processing”, International Journal of Machine Tools & Manufacture, Vol. 43, pp. 525-521
[25]許光城, 徐昇偉, 古煌懇, 2007, “自動化水錶檢測機械視覺系統建立之研究”, 中國機械工程學會第二十四屆全國學術研討會論文集, D18-0004
[26]邱奕契, 陳家振, 2007, “軟板線路瑕疵檢測與分類演算法之研究”, 中國機械工程學會第二十四屆全國學術研討會論文集, D12-0025
[27]潘亞東, 江偉銘, 邱裕傑, 2007, “以移動邊緣檢測法為基礎之即時多目標影像追蹤” 中國機械工程學會第二十四屆全國學術研討會論文集, D18-0002
[28]黃清忠, 2007, “重疊物體在投影轉換下之辨識”, 中國機械工程學會第二十四屆全國學術研討會論文集, B24-0016
[29]賴偉銘, 江榮傑, 2007, “影像處理應用於位置之量測”, 中國機械工程學會第二十四屆全國學術研討會論文集, B25-0001
[30]F. Duan, Y.N Wang, H.J. Liu, Y.G. Li, 2007, “Duan-A machine vision inspector for beer bottle”, Engineering Applications of Artificial Intelligence, Vol. 20, pp. 1013-1021
[31]H.S. Halkacı, O. Mavi, O. Yigit, 2007, “Evaluation of form error at semi-spherical tools by use of image processing”, Measurement, Vol. 40, pp. 860-867
[32]S.F. Hwang, J.T. Horn, H.J. Wang, 2008, “Strain measurement of SU-8 photoresist by a digital image correlation method with a hybrid genetic algorithm”, Optics and Lasers in Engineering,, Vol. 46, pp. 281-289
[33]Matrox Imagine Library User’s Manual.
[34]戴宜傑,1999,沖壓加工與沖模設計,新陸書局,台北。
[35]金屬工業研究發展中心,2000,沖壓模具設計手冊。
[36]余煥騰,陳適範,1994,金屬塑性加工學。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔