(18.206.187.91) 您好!臺灣時間:2021/05/19 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊銘
研究生(外文):Chun-Ming Chen
論文名稱:鋁合金電弧噴焊沉積層溫度之三維模擬
論文名稱(外文):A Three Dimensional Simulation of Temperature Distribution in the Process of Aluminum Alloy Electric Arc Spray
指導教授:李泓原
指導教授(外文):Hung-Yuan Li
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:電弧噴焊田口實驗計畫法有限元素法
外文關鍵詞:Electric Arc Spray FormingTaguchi MethodFinite ElementFinite Element Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:641
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
電弧噴焊為因應現今少量多樣的時代潮流所採用的快速模具製程之一;早期電弧噴焊大多應用於表面處理,但由於其製程具備能在短時間內將物品外形複製之特性,現則部份應用於快速模具中。因所複製之外形為一層薄的沉積層,其內部空孔率與氧化物多寡,會隨其溫度分佈而影響沉積層品質,其機械強度與熱傳導係數等性質亦將因噴焊時溫度分佈變化而有所不同。

本研究分為兩階段,首先實驗階段先以田口實驗計畫法(Taguchi Method)取得最佳沉積重量之噴焊參數,再藉此數據分別噴焊一分鐘、二分鐘、三分三十秒及五分鐘等不同時間進行沉積,並且使用逆向工程方法取得沉積層之外形並且計算其沉積速率,最後進行六十秒基板底部之溫度量測;於電腦模擬階段,則利用有限元素法進行分析,期望能以數值分析之方法建立沉積層之溫度場模型,本研究分析模型使用三維模型,並以元素生成的方式進行模擬。

經實驗與模擬結果相互比對,噴覆時間於六十秒時,其誤差約為2.5%,可證實其電腦模擬可以準確預估實際噴覆時之溫度場分佈,並可藉此方法作為提供日後突破製程限制上的重要參考依據。
Electric arc spray is one of many rapid mold processes. This method has the advantages such as surface improvement, corrosion resistance and, recently, it is widely used to build up mold rapidly. The quality in the deposition layer will be affected by the temperature distribution from the number of ratio in hole and oxide. Therefore, the temperature distribution greatly affects the mechanical intensity and thermal conductive coefficient in the deposition layer.

There are two parts in this study. First of all, the parameters of the electric arc spray will be obtained by the Taguchi method. Secondly, the geometric shape growth history in different times will be obtained by the reverse engineering method. Numerical analysis is based on the three-dimensional heat transfer equation and the finite element method is applied to simulate the deposition growth during the process.

The error percentage is approximately 2.5% when the temperature of simulation is compared with the experiment at one minute.
目錄
摘要 .................................................................................................................. I
ABSTRACT ........................................................................................................ II
致謝 ............................................................................................................... III
表目錄............................................................................................................. VI
圖目錄............................................................................................................ VII
符號表............................................................................................................... X
第一章 緒論................................................................................................. 1
1-1 前言......................................................................................................... 1
1-2 熔射技術之發展...................................................................................... 3
1-3 熔射原理.................................................................................................. 4
1-3-1 電弧噴焊製程參數探討.................................................................... 9
1-3-2 電弧噴焊製造快速模具特點分析...................................................11
1-3-3 沉積層結合強度的檢測...................................................................13
1-4 文獻回顧.................................................................................................16
1-5 研究動機與目的.....................................................................................21
第二章 研究理論探討.................................................................................22
2-1 實驗計畫法.............................................................................................22
2-1-1 田口實驗計畫法簡介.......................................................................24
2-2 熱傳遞方式.............................................................................................30
2-2-1 熱傳導方程式...................................................................................32
2-2-2 電弧噴焊溫度場統御方程式推導...................................................35
2-3 有限元素法.............................................................................................37
2-3-1 電弧噴焊沉積層之數值推導...........................................................38
第三章 實驗規劃與方法.............................................................................40
3-1 電弧噴焊實驗流程.................................................................................40
3-2 最佳沉積重量實驗.................................................................................44
3-3 外形輪廓量測.........................................................................................47
3-4 沉積速率計算.........................................................................................50
3-5 溫度量測實驗.........................................................................................51
3-6 數值模擬.................................................................................................55
第四章 結果與討論.....................................................................................62
4-1 最佳沉積重量實驗.................................................................................62
4-2 外形輪廓量測.........................................................................................66
4-3 沉積速率計算.........................................................................................74
4-4 沉積層溫度量測實驗.............................................................................77
4-5 數值模擬.................................................................................................80
第五章 結論................................................................................................92
參考文獻..........................................................................................................94
[1] Kodama, H., 1981, “Automatic Method for Fabricating a 3D Plastic Model with Photo-hardening Polymer” , Review of Scientific Instruments, Vol. 52, No. 11, pp. 1770-1773.
[2] 羅仁權、鄒治華、謝正一、周修宏,2002,“快速模具技術之發展現況與未來趨勢”,機械月刊,28 卷,第二期。
[3] 楊占堯、唐一平等,2002,“快速成型和電弧噴塗相結合的快速製模技術研究”,塑性工程學報,9。
[4] 姚福生、郭重慶、劉培權、路甬祥、吳錫英,2002,先進製造技術,清華大學出版社。
[5] 蕭威典,2006,熔射覆膜技術,全華科技圖書。
[6] 王海軍,2006,熱噴塗技術問答,國防工業出版社。
[7] 劉茂賢,2005,“熔射製程與及時監控技術之原理與應用簡介”,工業材料雜誌,2 月,pp. 123-131。
[8] H.J. Kim, S.Y. Hwang, C.H. Lee and P. Juvanon, 2003, “Assessment of Wear Performance of Flame Sprayed and Fused Ni-based Coatings”, Surf.Coat., Vol. 172, pp. 262-269.
[9] Daryl E. Crawmer, 2004, “Thermal Spray Processes”, ASM International and the Spray Society, pp. 54-76.
[10] 吳中仁、劉武漢、蕭威典、楊寧、劉茂賢、黃金德,2005,“超音速熔
射技術簡介及其應用”,工業材料雜誌,2 月,pp. 117-122。
[11] A. Papyrin, 2001, “Cold Spray Technology”, Adv. Mater. Process., pp.49-51.
[12] 李文亞、李長久,2002,“冷噴塗特性”,中國表面工程,pp. 12-16。
[13] 王學讓、陽占堯,2006,“快速成形與快速模具製造技術”,清華大學出版社。
[14] Jinlin W., Songging W., Weisheng G., et a1., 1995,“Supersonic Arc Spray Process”, ITSC 95 Akira Ohmori Edited. Kobe, Japan, pp. 317-320.
[15] 柯建宇,2006,低溫電弧噴焊快速模具機械性質之研究,碩士論文,
國立高雄應用科技大學模具工程系碩士班。
[16] C. K. Chua, K. H. Hong, S. L. Ho, 1999, “Rapid Tooling Technology. Part1. A Comparative Study”, The International Journal of Advanced Manufacturing Technology, Vol. 15, pp. 604-608.
[17] C. K. Chua, K. H. Hong, S. L. Ho, 1999, “Rapid Tooling Technology. Part2. A Case Study Using Arc Spray Metal Tooling”, The International Journal of Advanced Manufacturing Technology, Vol. 15, pp. 609-614.
[18] Ruijun Wang, Xu Lin, Zhang Tianjian, Huang Xiaoou, 2004, “The
Properties of the High Productive High Velocity Arc Sprayed Coatings
and Its Applications”, Surface Engineering Technology Institute of
CAAMS, Beijing, China.
[19] Giumin Liu, K. Rozniatowski, K. J. Kurzydlowski, 2001, “Quantitative Characteris-tic of FeCrAl Films Deposited by Arc and High-Velocity Arc Spraying”, Faculty of Materials Science and Engineering, pp. 99-104.
[20] Milind Kelkar, Joachim Heberlein, 2002, “Wire-Arc Spray Modeling”,
Plasma Chemistry and Plasma Processing, Vol. 22, pp. 1-25.
[21] J. C. Fang, W. J. Xu, Z. Y. Zhao, 2005, “Arc Spray Forming”, Journal of Materials Processing Technology, pp. 1032-1037.
[22] Dirk Bergmann, Udo Fritsching, 2004, “Sequential Thermal Modeling of the Spray-Forming Process”, International Journal of Thermal Science,
Vol. 43, pp. 403-415.
[23] M. P. Planche, H. Liao, C. Coddet, 2004, “Relationships Between
In-flight Particle Characteristics and Coating Microstructure with a Twin Wire Arc Spray Process and Different Working Conditions”, Surface and Coatings Technology, pp. 215–226.
[24] A. P. Newbery, P. S. Grant, R. A. Neiser, 2005, “The Velocity and Temperature of Steel Droplets During Electric Arc Spray”, Surface & Coatings Technology, Vol. 195, pp. 91-101.
[25] Michaela Krauss, Dirk Bergmann, Udo Fristiching, Klaus Bauckhage, 2002, “In-situ Particle Temperature, Velocity and Size Measurements in the Spray Forming Process”, Materials Science and Engineering, Vol.A326, pp. 154-164.
[26] P. S. Grant, 2007, “Solidification in Spray Forming”, Metallurgical and Materials Transaction, Vol. 38A, pp. 1520-1529.
[27] P. S. Grant, B. Cantor, 1995, “Modelling of Droplet Dynamic and
Thermal Histories During Spray Forming-III. Analysis of Spray Solid
Fraction”, Acta Materialia, Vol. 43, pp. 913-921.
[28] C. Cui, U. Fritsching, A. Schulz, Q. Li, 2005, “Mathematical Modeling of Spray Forming Process of Tubular Performs Part 1. Shape Evolution”,Acta Materialia, Vol. 53, pp. 2765-2774.
[29] C. Cui, U. Fritsching, A. Schulz, Q. Li, 2005, “Mathematical Modeling of Spray Forming Process of Tubular Performs Part 2. Heat Transfer”, Acta Materialia, Vol. 53, pp. 2775-2784.
[30] O. Meyer, U. Fritsching, K. Bauckhage, 2003, “Numerical Investigation of Alternative Process Conditions for Influencing the Thermal History of Spray Deposited Billets”, International Journal of Thermal Science, Vol.42, pp. 153-168.
[31] R. Mimnisandram, R. Jones, K. Kelkar et al., 2002, “Prediction of Thermal History of Performs Produced by the Celean Mtal Spray
Forming Process”, Materials Science and Engineering, Vol. A326,
pp. 184-193.
[32] N. H. Pryds, J. H. Hattel, T. B. Pedersen, J. Thorborg, 2002, “An Integrated Numerical Model of the Spray Forming Process”, Acta Materialia, Vol. 50, pp. 4075-4091.
[33] N. H. Pryds, J. H. Hattel, 2005, “Spray Forming : A Numerical
Investigation of the Influence of the Gas to Melt Ratio on the Billet
Surface Temperature”, International Journal of Thermal Science, Vol. 44,pp. 587-597.
[34] J. H. Hattel, N. H. Prdys, 2006, “Modelling the Influence of the Gas to Melt Ratio on the Solid Fraction of the Surface in Spray Formed Billets”,Simulation Modelling Practice and Theory, Vol. 14, pp. 1087-1099.
[35] 郭文強,2008,鋁合金電弧噴焊沉積層溫度場之研究,碩士論文,國
立高雄應用科技大學模具工程系碩士班。
[36] 王伊卿、唐一平、武澱梁、趙文軫、盧秉恒,2002,“電弧噴塗層溫度
場數值模擬”,中國有色學報,3 期,pp. 464~470。
[37] 李德元、劉勇、董曉強、張忠禮,2007,“電弧噴塗塗層溫度場及應力應變分析”,瀋陽工業大學學報,3 期,pp. 258~262。
[38] Youli Zhu, Hanlin Liao, C. Coddet, 2006, “Transient Thermal Analysis and Coating Formation Simulation of Thermal Spray Process by Finite Difference Method”, Surface & Coatings Technology, Vol. 200, pp.4465-4673.
[39] Robert O. Kuehl, 2000, Design of Experiments:Statistical Principles of Research Design and Analysis, 2nd edition Pacific Grove, CA.
[40] Charles R. Hicks, 1982, Fundamental Concepts in the Design of
Experiments, 3rd edition, Saunders College Publishing, FL.
[41] Douglas C. Montgomery, 1997, Design and Analysis of Experiments, 4th edition, John Wiley & Sons, New York.
[42] Genichi Taguchi, Taguchi Methods /Design of Experiments, Dearborn MI/ ASI Press, Tokyo.
[43] 丁志華、戴寶通,2001,田口實驗計畫法簡介(I),毫微米通訊第八
卷,第三期。
[44] 丁志華、游璨瑋、戴寶通、朝春光,2001,田口實驗計畫法簡介(II),
毫微米通訊第八卷,第四期。
[45] 鐘清章等人,1990,田口式品質工程導論,中華民國品質學會發行。
[46] 李輝煌,2000,田口方法品質設計的原理與實務,高立圖書有限公司。
[47] 邱武耀,1989,有限元素法之鑄造凝固分析,碩士論文,國立台灣工
業技術學院工程技術研究所機械工程組。
[48] 翁彥銘,2003,砷化鎵長晶之模式分析,碩士論文,國立成功大學工
程科學研究所。
[49] Kyong-Yee Lee and Chun P. Hong, 1997, “Stochastic Modeling of
Solidification Grain Structures of Al-Cu Crystalline Ribbons in Planar Flow Casting”, ISIJ International, Vol. 37, pp. 38-46.
[50] Wolfram S., 1983, “Statistical Mechanics of Cellular Automata”,
Reviews of Modern Physics, Vol. 55, pp. 601-644.
[51] Yi Hyun Chang, Sang Mok Lee, Kyong Yee Lee and Chun Pyo Hong,
1998, “Three-dimensional Simulation of Dendritic Grain Structures of
Gas-atomized Al-Cu Alloy Droplets”, ISIJ International, Vol. 38, pp.
63-70.
[52] Ch.-A. Gandin and M. Rappaz, 1994, “A Coupled Finite-Cellular
Automaton Model For The Prediction of Dendritic Grain Structures In
Solidification Processes”, Acta Metall. Mater., Vol. 42, No. 7, pp.
2233-2246.
[53] Hong C. P., Umeda T. and Kimura Y., 1984, “Numerical Models for
Casting Solidification Part I. The Coupling of the Boundary Element and Finite Difference Methods for Solidification Problems”, Metall. Trans., Vol. 15B, pp. 91-101.
[54] Chun-Pyo Hong, 2004, Computer Modelling of Heat and Fluid Flow in Materials Processing, CRC Press, USA.
[55] 姚山、宮雪娜、戴利欣等,2004,“快速冷卻條件下凝固潛熱處理模型
的研究”,熱科學與技術,4 期,pp. 329-331。
[56] MOHR, O., 1868, Beitrag Zur Theorie Der Holz-und Eisen
Konstruktionen, Zeit. Des Architekten Und Ingenieur VerienesZu
Hannover.
[57] Praxair Surface Technologies, 1998, Model BP400 Arc Spray System, Revision A, April.
[58] Timothy L. Gall, William J. Carnes, 1985, Metals Handbook, American Society for Metals, USA.
[59] P. S. Grant, B. Cantor and L. Katgerman, 1993, “Modelling of Droplet Dynamic and Thermal Histories During Spray Forming-II. Effect of Process Parameters”, Acta Metall. Mater., Vol. 41, pp. 3109-3118.
電子全文 電子全文(網際網路公開日期:20210816)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top