(3.238.173.209) 您好!臺灣時間:2021/05/15 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:沈子安
研究生(外文):Zi-An Shen
論文名稱:平頭四角頸螺栓成形與模具設計分析
論文名稱(外文):Analysis of forming for flat-headed tetragon neck bolt and die design
指導教授:許昭和許昭和引用關係
指導教授(外文):Chao-Ho Hsu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:DEFORM平頭四角頸螺栓模具應力
外文關鍵詞:DEFORMflat-headed tetragon neck boltdie stress
相關次數:
  • 被引用被引用:6
  • 點閱點閱:572
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:1
本研究係以多道次冷鍛成形,來成形形狀奇特之平頭四角頸螺栓,螺栓的規格為M12×1.25×37.5之汽車底盤固定螺栓,材料選用SCM435,線材直徑為11.65mm,硬度為HRB85-88。工廠所使用的原始成形設計在其四角頸的四個角落容易發生材料填充不足的現象,且模具的使用壽命不佳。本研究使用Pro-E與DEFORM-3D軟體,設計出較佳的成形過程並進行金屬成形分析。先手繪設計出可能的成形過程,再利用PRO-E得到各道次之上下模具,轉成STL檔匯入DEFORM-3D進行前處理設定及模擬分析其成形。由於產品的對稱性,故將其胚料分成1/8進行分析,可節省分析的時間與增加分析的準確性。為延長模具的使用壽命與提升成品的品質,我們找出三種較可能的成形過程,從這三種成形過程中組合設計出一較佳的多道次冷鍛成形過程。由分析結果可知,最佳成形過程的總負荷較原始成形過程的總負荷減少了33.25公噸,最佳成形過程的模具最大等效應力較原始成形過程的模具最大等效應力降低了970MPa。最佳的成形過程之成形負荷與模具最大等效應力可較原始成形過程減少大約16.2%與17.73%。藉由新的成形過程來降低成形負荷,並降低模具所承受的最大等效應力使模具的使用壽命增加。
In this study, the multi-step cold forging processes were used to form the particular shape of flat head tetragon neck bolt. The standard classification of the bolt is M12×1.25×37.5 which used in chassis of car, and SCM435 was used as the material. The diameter of the wire rod is 11.65mm, and its hardness is between 85 to 88 in HRB. The original forming process of the factory is easy to the material fill under in four corners of the neck and the using life of the die is not good. This study used PRO-E and DEFORM-3D (FEM package) to design a better forming process than the original forming process and to analyze the characteristics of the metal forming. Firstly, draw every possible forming processes. Next, use PRO-E to get the files of the punch and die for each step, and then transform the above-mentioned files into STL to be used in DEFORM-3D as geometries and to define the conditions of simulation in the pre-process of DEFORM. Since the product is symmetrical, therefore the billet will be divided into 1/8. It not only decrease the analyzing time but also increases the precision of the simulation. In order to increase using life of the die and raise quality of the product, we find three forming processes. From the three forming processes, we combine them and design an optimal forming multi-step approach. By the results of the analysis, the total forging load and maximum effective stress of the die for optimal forming process is about33.25 ton and 970 MPa lower than the original forming process. It reduced about 16.2% and 17.73% than the original forming process. The optimal forming process could diminish the forming load, die stress and raise the life of die.
目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 x
一、緒論. 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的與動機 5
1-4 本文研究範疇 7
二、塑性加工基本理論. 8
2-1 塑性加工概論 8
2-2 塑性加工之特性 8
2-3 塑性加工在工業上之地位及應用 8
2-4 塑性加工法之分類 9
2-5 塑性加工系統 10
2-6 金屬之機械性質與試驗 13
2-6-1 塑流應力 13
2-6-2 延展性與可成形性 13
2-7 塑性理論之基本假設 15
2-8 塑性加工的分析方法 16
2-9 塑性理論常用之力學方程式 18
三、鍛造基本概論 28
3-1 鍛造的來源及應用 28
3-2 鍛造加工之優缺點 28
3-3 鍛造加工之分類 29
3-4 鍛件材料與模具材料基本性質 32
3-5 螺栓成形基本介紹 33
四、有限元素基本理論與DFEORM介紹 34
4-1 有限元素法簡介 34
4-2 有限元素法應用與目的 35
4-3 有限元素優缺點與發展過程 37
4-4 塑性成形之FEM力學模式分析 39
4-5 有限元素軟體DEFORM-3D簡介 40
4-5-1 DEFORM軟體架構介紹 40
4-5-2 DEFORM之解析模式 43
4-5-3 DEFORM之材料模式 43
4-5-4 DEFORM之摩擦環境條件 43
五、研究規劃 45
5-1 設計流程 45
5-2 平頭四角頸螺栓成形設計 47
5-2-1 平頭四角頸螺栓成品尺寸 48
5-2-2 各成形方案設計 49
5-2-3 DEFORM-3D環境參數設定 52
5-2-4 胚料體積設計 53
5-3 模具應力分析設定 54
六、結果與討論 55
6-1 本文跟其它相關文獻之比較 55
6-2 各成形過程之結果 56
6-2-1 原始成形過程 57
6-2-2 新成形過程I 59
6-2-3 新成形過程II 61
6-2-4 新成形過程III 63
6-2-5 最佳成形過程 65
6-3 模具應力分析之結果 68
6-3-1 原始成形過程之模具應力分析 69
6-3-2 新成形過程I之模具應力分析 71
6-3-3 新成形過程II之模具應力分析 73
6-3-4 新成形過程III之模具應力分析 75
6-3-5 最佳成形過程之模具應力分析 77
6-4 彈性模具與剛性模具分析之比較 80
七、結論與建議 81
7-1 結論 81
7-2 建議 82
參考文獻 83
作者簡介 86
參 考 文 獻
[1] H. Nagele, H. Worner, M. Hirschvogel “Automotive parts produced by optimizing the process flow forming-machining,” Journal of Materials Processing Technology 98 (2000) 171-175
[2] Dong-Hwan Jang,Tae-Kon Ryou,Dae -Young Yoon,Beong-Bok Hwang “Erratum to The process sequence design of power-assisted steering part,” Journal of Materials Processing Technology 166 (2001) 310-316
[3] A. Behrens, H. Just “Extension of the forming limits in cold and warm forging by the FE based fracture analysis with the integrated damage model of effective stresses,” Journal of Materials Processing Technology 125-126 (2002) 235-241
[4] Conor MacCormack,John- Monaghan “2D and 3D finite element analysis of a three stage forging sequence,” Journal of Materials Processing Technology 127 (2002) 48-56
[5] G.-C. Wang*, G.-Q. Zhao, X.-H. Huang, Y.-X. Jia “Analysis and design of a new manufacturing process for a support shaft using the finite element method,” Journal of Materials Processing Technology 121 (2002) 259-264
[6] Dong-Kyun Min, Min-Eung Kim “A study on precision cold forging process improvements for the steering yoke of automobiles by the rigid–plastic finite-element method,” Journal of Materials Processing Technology 138 (2003) 339-342
[7] A. Gontarz, Z. Pater, W. Weroñski “Head forging aspects of new forming process of screw spike,” Journal of Materials Processing Technology 153-154 (2004) 736-740
[8] H.S. Kim “A study on cold forging process sequence design of terminal pins for high-voltage capacitors,” Journal of Materials Processing Technology 187-188 (2007) 604-608
[9] K.S. Park, Chester J. VanTyne, Y.H. Moon, “Process analysis of multistage forging by using finite element method,” Journal of Materials Processing Technology 187-188 (2007) 586-590
[10] Osamu Kada,Masahiro Toda,Hidekazu Yanagi, “Advanced Forming Analysis for Bar and Wire Rod with Finite Element Method,” NIPPON STEEL TECHNICAL REPORT No. 96 July 2007
[11] 林恆勝、許源泉、楊東昇、楊政峰、歐聖堂,”六角螺栓近淨形頂鍛成形模擬”,鍛造 第十六卷第一期,5-12頁,2007
[12] Dyi-Cheng Chen∗, Sheng-Kai Syu, Cing-Hong Wu, Sin-Kai Lin, “Investigation into cold extrusion of aluminum billets using three-dimensional finite element method,” Journal of Materials Processing Technology 192–193 (2007) 188–193
[13] Cheng Lv, Liwen Zhang,, Zhengjun Mu, Qingan Taib, Quying Zheng, “3D FEM simulation of the multi-stage forging process of a gas turbine compressor blade,” journal of materials processing technology 1 9 8 ( 2 0 0 8 ) 463–470
[14] N. Asnafi, “On tool stresses in cold heading of fasteners,” Engineering Failure Analysis 6 (1999) 321-335
[15] John Walters*, Wei-Tsu Wu, Anand Arvind, Guoji Li,Dave Lambert, Juipeng Tang, “Recent development of process simulation for industrial applications,” Journal of Materials Processing Technology 98 (2000) 205-211
[16] Jens Groenbaek, Torben Birker, “Innovations in cold forging die design,” Journal of Materials Processing Technology 98 (2000) 155-161
[17] Zhaohui Huang,Peifu Fu, “Solution to the bulging problem in the open-die cold extrusion of a spline shaft and relevant photoplastic theoretical study,” Journal of Materials Processing Technology 114 (2001) 185-188
[18] Youngseon-Lee,Junghwan-Lee,T.Ishikawa, “Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy,” Journal of Materials Processing Technology 130–131 (2002) 532–539
[19] C.S. Im,S.R.Suh,M.C.Lee,J.H.Kim,M.S.Joun, “Computer aided process design in cold-former forging using a forging simulator and a commercial CAD software,” Journal of Materials Processing Technology 95 (1999) 155-163
[20] Dae-Cheol Ko, Dong-Hwan Kim, Byung-Min Kim, “Application of artificial neural network and Taguchi method to preform design in metal forming considering workability,” International Journal of Machine Tools & Manufacture 39 (1999) 771–785
[21] B.K.Lee、H.H. Kwon、H.Y. Cho , “A study on the automated process planning system for cold forging of non-axisymmetric parts using FVM simulation,” Journal of Materials Processing Technology 130–131 (2002) 524–531
[22] 王水鐸、劉志成,”利用破壞能量做多道次冷鍛模具設計之評估,遠東學報第二十四卷第二期, 2007
[23] H.I. Lee、B.C. Hwang,W.B. Bae, “A UBET analysis of non-axisymmetric forwars and backward extrusion,” Journal of Materials Processing Technology 113 (2001) 103-108
[24] L.Janicek, J.Petruska,B.Maros,S.Rusz,“Clod forming of bolts without thermal treatment,” Journal of Materials Processing Technology 125-126 (2002) 341-346
[25] A. Gontarz, Z. Pater, W. Weroñski,“Head forging aspects of new forming process of screw spike,” Journal of Materials Processing Technology 153–154 (2004) 736–740
[26] 林昇立,塑性加工學,高立出版社,1992。
[27] 林文樹,塑性加工學,三民書局,1987。
[28] 李榮顯,塑性加工學,三民書局,1986。
[29] 鄭朝友,應用田口法改善模具之應力,國立高雄應用科技大學模具工程所,2007
[30] 成清吉,圓柱旋轉壓縮成形理論,國立高應第一科技大學機械與自動化工程系,2003
[31] 陳狄成,應用有限元素法於缺陷板材壓延加工之解析,國立中山大學機械與機電工程學系,2003
[32] 陳麒翰,不銹鋼平板搓牙製程有限元素法分析之研究,國立成功大學機械工程學系,2004
[33] 許燕忠,孔型壓延加工之有限元素解析,國立中山大學機械工程學系研究所,1999
[34] 陳日興,高強度鋁合金冷鍛成形極限電腦輔助評估之研究,國立成功大學機械工程學系,2003
[35] 陳正宗、洪宏基,”邊界元素法”,台北新世界出版社,第374-377頁(1992)。
[36] Fluhrer, J.,’’DEFORM 3D Version 5.0 User Manual’’,Scientific Forming Technologies Corporation,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top