(3.235.236.13) 您好!臺灣時間:2021/05/15 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳政嘉
研究生(外文):Cheng-Chia Chen
論文名稱:單晶矽紅外線微發射器的設計與製作之研究
論文名稱(外文):Study on the Design and Fabrication of a Single Crystalline Silicon Infrared Micro-Emitter
指導教授:陳忠男
指導教授(外文):Chung-Nan Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:熱型紅外線微發射器矽微橋。矽浮板矽懸浮奈米線。雙摻雜TMAH。
外文關鍵詞:Thermal Infrared MicroemitterSuspended MembraneSilicon
相關次數:
  • 被引用被引用:8
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主旨在利用矽晶圓製作成熱型單晶矽紅外線微發射器,我們設計了矽微橋式與平板式微發射器來相互比較。在製程設計中,使用硼離子佈值製程來降低元件電阻率,是為了在等電壓下提高元件焦耳功率。在我們的研究中除了熱型紅外線微發射器設計與製作外,我們也嘗試了去製作出懸浮矽奈米線結構。
為了保護元件的鋁電極在浸泡濕式蝕刻時不被TMAH溶液蝕刻掉,本論文針對2%與5%的雙摻雜TMAH溶液分別在不同矽酸比例與不同溫度包括70℃、80℃、90℃進行各種薄膜濕式蝕刻實驗,發現5%TMAH在矽酸45.6gm/l與過硫酸銨7gm/l蝕刻溫度90℃的實驗參數中,對鋁金屬的蝕刻率非常低;5%TMAH在矽酸30.4gm/l與過硫酸銨7gm/l蝕刻溫度80℃的實驗參數中,對單晶矽<100>晶格方向最快蝕刻率可以高達到每分鐘為10613Å。
本研究成功製作出矽微橋發射器,其電阻值在室溫下經測量約為200Ω。供給偏壓電流可在38mA 下觀察到元件被點亮。並利用ANSYS熱傳模擬軟體,模擬出矽微橋發射器元件在電功率0.6W時被點亮後中心溫度最高可達攝氏1300度。
The purpose of this thesis is to fabricate a silicon infrared micro-emitter on a silicon wafer. In our work, we designed plate-type thermal infrared micro-emitters and bridge-type micro-emitters. In our process design, p+ diffusion process was used in order to reduce the device resistivity. We also try to study the fabrication of a suspended silicon nano-wire in this thesis.
In order to protect aluminum bonding pads during etching process, dual doped TMAH solutions with TMAH concentration of 2% and 5% were adopted and estimated at the temperature of 70℃, 80℃ and 90℃.We found that the etch rate of aluminum is negligible in the 5% TMAH solution doped with 45.6gm/l silicic acid and 7gm/l AP at 90℃ and the etch rate of <100> silicon is 10613Å/min in 5% TMAH solution doped with 30.4gm/l silicic acid and 7gm/l AP at 80℃.
In this study, a silicon bridge-type micro-emitter with a resistance of 200Ω was successfully completed and measured. As the bias current was up to 38mA, we can find the device glowed. Finally, our ANSYS simulation result shows the central temperature of the bridge is up to 1300℃ under 0.6W operation power.
Keyword: Thermal Infrared Microemitter, Suspended Membrane, Silicon
Microbridge, Suspended silicon nanowire structures, Dual Doped TMAH.
目 錄
摘要----------------------------------------------------------------------------------- I
ABSTRACT------------------------------------------------------------------------ II
致 謝------------------------------------------------------------------------------- III
目 錄------------------------------------------------------------------------------- IV
表 目 錄--------------------------------------------------------------------------- VI
圖目錄----------------------------------------------------------------------------- VII
第一章、緒論----------------------------------------------------------------------- 1
1.1 研究背景與動機------------------------------------------------------- 1
1.2 文獻回顧---------------------------------------------------------------- 4
1.2.1紅外線技術發展史--------------------------------------------- 4
1.2.2紅外線發射器種類與介紹------------------------------------ 8
1.3論文架構--------------------------------------------------------------- 10
第二章、理論基礎---------------------------------------------------------------- 11
2.1單晶矽晶片結構特性------------------------------------------------- 11
2.1.1<111>單晶矽晶圓--------------------------------------------- 13
2.2等向性與非等向性蝕刻--------------------------------------------- 16
2.3蝕刻溶液--------------------------------------------------------------- 19
2.4紅外線發射理論基礎------------------------------------------------ 22
2.4.1黑體輻射------------------------------------------------------- 22
2.4.2普郎克定律----------------------------------------------------- 23
2.4.3維恩位移定律-------------------------------------------------- 24
2.4.4史蒂芬-波茲曼定理------------------------------------------- 25
2.4.5吸收率、放射率、反射率及穿透率--------------------------- 26
2.5紅外線元件的熱傳理論--------------------------------------------- 28
2.5.1熱導------------------------------------------------------------- 28
2.5.2熱容------------------------------------------------------------- 39
2.5.3熱時間常數---------------------------------------------------- 41
2.5.4微紅外線發射器溫度計算---------------------------------- 42
2.5.5電阻溫度係數------------------------------------------------- 43
第三章、實驗設計與製程規劃------------------------------------------------- 44
3.1光罩製程規劃--------------------------------------------------------- 44
3.1.1單晶矽懸浮矽奈米線---------------------------------------- 44
3.1.2懸浮微結構矽浮板與熱型紅外線發射器元件製程設計
------------------------------------------------------------------ 49
3.2懸浮矽奈米線與懸浮結構矽浮板製程設計--------------------- 58
3.2.1懸浮矽奈米線------------------------------------------------- 58
3.2.2懸浮結構矽浮板---------------------------------------------- 61
3.3熱型紅外線發射器元件製程設計--------------------------------- 65
3.4雙摻雜TMAH蝕刻率實驗----------------------------------------- 70
第四章、實驗結果與討論------------------------------------------------------- 77
4.1懸浮矽奈米線製作結果討論--------------------------------------- 77
4.2懸浮結構矽浮板製作結果討論------------------------------------ 79
4.2.1懸浮結構結果圖---------------------------------------------- 85
4.3熱型紅外線發射器元件製作結果討論--------------------------- 89
4.4熱型紅外線發射器元件通電點亮測試--------------------------- 90
第五章、結論---------------------------------------------------------------------- 94
參考文獻--------------------------------------------------------------------------- 96
附錄一:雙摻雜TMAH蝕刻率實驗------------------------------------------ 102
[1]G.K. Fedder,“MEMS FABRICATION”,Department of Electrical and
Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh , PA 15213-3890.
[2]曹榮峻,“應用MEMS熱膜感測器與液晶視流探討矩形截面凸狀物之回覆
接觸現象”,國立成功大學航空太空工程學系, 碩士論文 2006。
[3]陳弘達,“以微機電技術製作含溫度感測器之微流道系統及兩相流熱傳研
究”,國立成功大學航空太空工程學系, 碩士論文 2005。
[4]P.K. Guha, S.Z. Ali, C.C.C. Lee, F. Udrea, W.I. Milne, T. Iwaki, J.A.Covington,
J.W. Gardner,“Novel design and characterisation of SOI CMOS micro-hotplates
for high temperature gas sensors”,Sensors and Actuators B 127 2007.
[5]S. Kodato, Q. Zhuaug, “High-power Si-microbridge infrared light source”,
in: Proceedings of the Transducers’99, Sendai, Japan, June 1999.
[6]Q. Zhuang, R. Wu, C. Li, K. Setsuo, Zhangzhan,“Fast infrared light source
with a constructor of silicon micro-bridge”,Proceedings of SPIE Vol. 5640.
[7]S.C. Roh, Y.M. Choi, S.Y. Kim,“Sensitivity enhancement of a silicon
micro-machined thermal flow sensor”, Sensors and Actuators A 128, 2006.
[8]R. Buchner, K. Froehner, C. Sosna, W. Benecke, W. Lang, “Toward Flexible
Thermoelectric Flow Sensors:A New Technological Approach”, JOURNAL OF
MICROELECTROMECHANICAL SYSTEMS, VOL. 17, NO. 5, OCTOBER 2008.
[9]N. Najafi, K.D. Wise, J. W. Schwank,“A Micromachined Ultra-Thin-Film Gas
Detector”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.41,NO.IO, OCTOBER 1994.
[10]J.B. Sun, M.Q., Q.A. Huang, “A Flip-Chip Packaged CMOS Thermal Flow
Sensor”, IEEE, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, 2005.
[11]G. Wiche, A. Berns, H. Steffes, E. Obermeier,“Thermal analysis of silicon carbide based micro hotplates for metal oxide gas sensors”,Technical University Berlin,Microsensor and Actuator Technology,13355 Berlin,Germany,Sensors and Actuators A 123–124, 2005.
[12]J.S. Suehle, Member, IEEE, Richard E. Cavicchi, Michael Gaitan, Member, Steve Semancik,“Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In–Situ Processing”,IEEE ELECTRON DEVICE LETTERS, VOL.14, NO.3, MARCH 1993.
[13]S. Majoo, J.W. Schwank, J.L. Gland, and K.D. Wise, Fellow,“A Selected-Area CVD Method for Deposition of Sensing Films on Monolithically Integrated Gas Detectors”, IEEE ELECTRON DEVICE LETTERS, VOL.16, NO.6, JUNE 1995.
[14]駱緯世,“熱電式紅外線微感測器之設計、分析及製造”, 國立清華大學動力機械工程學系, 碩士論文 2004。
[15]翁炳國,“矽之微細加工技術與應用”, 國立交通大學光電工程研究所, 博士論文 1992。
[16]J.S. Han, T. Kadowaki, K. Sato,M. Shikida,“Thermal Analysis of Fingerprint Sensor Having a Microheater Array”, IEEE MICROMECHATRONICS AND HUMAN SCIENCE, 1999.
[17]D. Goustouridis, G. Kaltsas, A. G. Nassiopoulou,“A CMOS Compatible Thermal Accelerometer Without Solid Proof Mass,Based On Porous Silicon Thermal Isolation”, IEEE, IMEL/NCSR Demokritos, P.O. Box 60228, 15310 Aghia Paraskevi, Athens, Greece, 2004.
[18]M. Parameswaran, A.M. Robinson, “Micromachined Thermal Radiation Emitter from a Commercial CMOS Process”, IEEE ELECTRON DEVICE LETTERS, VOL.12, NO.2, FEBRUARY 1991.
[19]謝正雄, “紅外光偵測技術的原理和應用”, 科學月刊, 第134期30~40頁, 民國70年2月。
[20]賴耿陽,“紅外線工程基礎應用”, 紅外線技術研究會, 1995年。
[21]G.T.A. Kovacs, N.I. Maluf, K.E. Petersen, “Bulk Micromachining of Silicon”,Proceedings of the IEEE, 86, No. 8, pp 1536-1551,AUGUST 1998。
[22]D.A. Neamen,“Semiconductor Physics and Devices”, McGraw-Hill Higher Education, 2003.
[23]R.E. Oosterbroek, J.W. Berenschot, H. V. Jansen, A.J. Nijdam, G.
Pandraud,“Etching Methodologies in 111–Oriented Silicon Wafers”,
Journal of Microelectromechanical systems, Vol.9, NO.3 September 2000.
[24]B. Schwartz and H.R. Robbins,“Chemical etching of silicon-IV. Etching technology”,J. Electrochem. Soc., Vol. 123, No.12, pp. 1903-1909, 1976.
[25]A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussing,
“Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH”J. Electrochem. Soc. Solid State, Vol. 114, No. 9, pp. 970-973, Sept.1997.
[26]D. L. Kendall,“On etching very narrow grooves in silicon”, Applied
Physics Letters, Vol. 26, pp. 195-198, 1975.
[27]陳柏穎,“矽晶圓非等向性濕式蝕刻特性研究”,國立中山大學機械與機電工程研究所, 碩士論文 2003.
[28]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,“Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer”, J. Electrochem. Soc., Vol. 137, No. 11, pp. 3612-3626, 1990.
[29]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,“Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants”,J. Electrochem. Soc. Vol. 137, No. 11, pp. 3626-3632, 1990.
[30]M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa,“Differences in anisotropic properties of KOH and TMAH solutions”, Sensors and Actuators 80, pp. 179-188, 2000.
[31]O. Tabata,“Anisotropy and selectivity control of TMAH”, J. Micro Electro Mechanical Systems, 1998.MEMS 98. Proceedings, pp. 229-233, 1999.
[32]O. Tabata, R. Asahi, H. Funabashi, S. Sugiyama,“Anisotropic etching of silicon in TMAH solutions”, Sensors and Actuators A 34, pp. 51-57, 1992.
[33]K. Biswas*, S. Das, D.K. Maurya, S. Kal, S.K. Lahiri,“Bulk micromachining of silicon in TMAH-based etchants for aluminum passivation and smooth surface”, Microelectronics Journal 37 pp.321–327, 2006.
[34]K. Biswas*, S. Kal,“Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon”, Microelectronics Journal 37 pp.519–525, 2006.
[35]陳婉婷,“反射式紅外線光學系統的模擬研究”, 國立高雄應用科技大學光電與通訊工程研究所, 碩士論文2008。
[36]吳強, 郭光燦, “光學”, 中國科學技術大學出版社1996。
[37]依日光, “紅外線遙感測熱法”, 復漢出版社2001。
[38]王士晉, “熱型紅外線微發射器製程與製作之研究”, 國立高雄應用科技大學光電與通訊工程研究所, 碩士論文2008。
[39]黃文琦,“微熱阻型紅外線感測器之白金薄膜厚度效應分析”, 國立高雄應用科技大學光電與通訊工程研究所, 碩士論文2008。
[40]翁炳國,“矽之微細加工技術及應用”, 國立交通大學光電工程研究所, 博士論文1992。
[41]蕭宏,“半導體製程技術導論”, 台灣培生教育出版股份有限公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top