(3.231.29.122) 您好!臺灣時間:2021/02/25 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林裕佳
研究生(外文):Yu-Jia Lin
論文名稱:具有寬頻帶之二維光子晶體三角晶格波導轉彎結構之研究
論文名稱(外文):Broadband Photonic Crystal Waveguide Bends in Two-Dimensional Triangular Lattice
指導教授:陳瑞鑫陳瑞鑫引用關係
指導教授(外文):Rei-Shin Chen
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:64
中文關鍵詞:波導轉彎空氣孔三角晶格光子晶體
外文關鍵詞:triangular latticephotonic crystalwaveguide bendair hole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是關於寬頻帶特性之二維光子晶體三角晶格波導轉彎的設計與分析。所設計之三角晶格波導轉彎結構,係改良自一個具有圓形空氣孔反射面的波導轉彎,因而獲得兩種較佳之結構,第一種是增大半徑的圓形空氣孔反射面結構,第二種是單模態波導的圓形空氣孔反射面結構。設計的目的是要提高脈衝波通過光子晶體波導轉彎的傳輸率,設計結果並與簡易型光子晶體波導轉彎及矩形空氣孔反射面波導轉彎之傳輸率作比較。由模擬結果得知,本設計可將傳輸率由簡易型的1~8%大幅提昇到圓形空氣孔反射面波導轉彎的99%。
在分析的方法上,先以平面波展開法計算光子晶體能隙,並希望能隙的範圍包含光纖通訊所使用之1.55μm波長,使光侷限在光子晶體波導中,再以時域有限差分法模擬光場在轉彎結構中光傳播的情形並計算傳輸率。由分析結果可知,本論文所提出的兩種改良之圓形空氣孔反射面波導轉彎結構,皆具有結構簡單、高傳輸率及寬頻帶等優點。
In this work, design and analysis of broadband photonic crystal (PhC) waveguide bend in two-dimensional triangular lattice is presented. By modifying a waveguide bend with a reflecting plane consisting of circular air holes, two better structures are obtained. The first is designed by enlarging the radii of the circular air holes of the reflecting plane. The second is designed by making the line-defect waveguide single- mode. The design purpose is to make the transmission efficiency of a launched pulse through the PhC waveguide bend as high as possible. Transmission results are compared to those obtained for a simple PhC bend and a bend with a rectangular reflecting plane. Simulation results show that transmission efficiency is dramatically enhanced to 99% for the bend with a reflecting plane consisting of circular air holes, compared to only 1~8% for a simple PhC bend.
As for the method of analysis, the plane wave expansion method is employed to calculate the photonic bandgap. And the 1.55 μm wavelength is required to be within the photonic bandgap to ensure the light-guiding condition. The finite-difference time-domain method is employed to simulate light propagation and to calculate transmission efficiency. It is shown that the proposed PhC waveguide bends exhibit the advantages of simple structures, high transmission, and broadband characteristics.
目 錄
中文摘要...................................................................................................i
英文摘要.....................................................................................................ii
致謝.............................................................................................................iii
目錄.............................................................................................................iv
表目錄.........................................................................................................vi
圖目錄.........................................................................................................vii
第一章 緒論..............................................................................................1
1.1光子晶體簡介..............................................................................1
1.2光子晶體波導轉彎之介紹..........................................................7
1.2.1利用鏡面反射面的方式......................................................8
1.2.2在轉彎處加缺陷的方式......................................................9
1.2.3拓撲優化設計的方式.........................................................10
1.2.4模態及波數匹配的方式......................................................11
1.2.5低折射率溝渠的方式..........................................................12
1.2.6利用雙轉彎間之共振現象的方式.......................................13 1.3研究動
機....................................................14
1.4論文架構......................................................................................14
第二章 數值分析方法..............................................................................16
2.1光在介質中傳遞的行為..............................................................16
2.2平面波展開法..............................................................................19
2.2.1 橫向電場模態....................................................................20
2.2.2 橫向磁場模態....................................................................21
2.3時域有限差分法..........................................................................22
2.4吸收邊界條件...........................................................................29
2.5高斯脈衝法的介紹.......................................................................31
第三章 寬頻帶之光子晶體波導轉彎結構...............................................34
3.1三角晶格空氣孔光子能隙分析....................................................36
3.2簡易型光子晶體波導轉彎..........................................................39
3.3矩形空氣孔反射面的光子晶體波導轉彎...................................42
3.4圓形空氣孔反射面的光子晶體波導轉彎...................................48
3.4.1增大圓形空氣孔反射面的空氣孔半徑................................52
3.4.2進一步設計使線缺陷波導呈單模態....................................55
3.5設計結果討論..............................................................................59
第四章 結論..............................................................................................61
參考文獻.....................................................................................................62
參考文獻
[1] 魏鴻斌,二維光子晶體之極化分離器設計,碩士論文,龍華科技大學,電機工程研究所,桃園,2007。
[2] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and
electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
[3]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, 1987.
[4] http://antpedia.com/html/56/n-5856.html
[5] http://artsci.ucla.edu/BlueMorph/chinese_research3.html.big5
[6] http://vivovoco.rsl.ru/VV/JOURNAL/NATURE/10_04/CRYST12.JPG
[7] http://www.lostseaopals.com.au/opals/index.asp
[8] B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” Photon. Technol. Lett., vol. 16, pp. 2469-2471, 2004.
[9] A. Chutinan and S. Noda, “Waveguides and waveguide bends in two- dimensional photonic crystal slabs,” Phys. Rev. B, vol. 62, pp. 4488-4492, 2000.
[10] J. S. Jensen, O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpøth, and M. Kristensen, “Topology design and fabrication of an efficient double 90° photonic crystal waveguide bend,” IEEE Photon. Technol. Lett., vol. 17, pp. 1202-1204, 2005.
[11] G. Ren, W. Zheng, Y. Zhang, K. Wang, X. Du, M. Xing, and L. Chen, “Mode analysis and design of a low-loss photonic crystal 60° waveguide bend,” J. Lightwave Technol., vol. 26, pp. 2215-2218, 2008.
[12] S. H. Tao, M. B. Yu, Q. Fang, J. F. Song, R. Yang, G. Q. Lo, and D. L. Kwong, “High transmission photonic crystal line-defect bend with double low-index trenches,” Group IV Photonics, IEEE International Conference, pp. 1-3, 2007.
[13] G. Y. Dong, X. L. Yang, L. Z. Cai, X. X. Shen, and Y. R. Wang, “Improvement of transmission properties through two-bend resonance by holographic design for a two-dimensional photonic crystal waveguide,” Opt. Express, vol. 16, pp. 15375-15381, 2008.
[14] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light﹐Princeton﹐1995.
[15] K. M. Leumg and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett., vol. 65, pp. 2646-2649, 1990.
[16] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., vol. 65, pp. 2650-2653, 1990.
[17] S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express, vol. 12, pp. 173-190, 2001.
[18] A. Taflove, Computational electrodynamics: the finite-difference time-domain method, MA: Artech, Norwood, 1995.
[19] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, pp.302-307, 1996.
[20] 薛志馨,二維光子晶體能隙特性之研究,碩士論文,國立成功大學工程科學研究所,台南,2004。
[21] J. P. Berenger, “Generalized perfectly matched layer - an extension of Berenger’s perfectly matched layer boundary,” IEEE Microwave and Guided Wave Lett., vol. 12, pp. 451-453, 1995.
[22] M. Koshiba, S. Member, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microwave and Wireless Components Lett., vol. 11, pp. 152-154, 2001.
[23] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., vol. 77, pp. 3787-3790, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔