[1]T. Kaisla, A. Sovijarvi, P. Piirila, H-M. Rjala, S. Haltsonen, and T. Rosqvist. “Validated method for automatic detection of lung sound crackles”, Med. Biol Eng.Comput., Vol. 29, pp. 517-521(1991)
[2]B. Sankur, Y. P. Kahya, E. C. Guler, and T. Engin. “Comparison of AR-based algorithms for respiratory sounds classification”, Comput. Biol. Med., Vol. 24, pp.67-76(1996)
[3]L. J. Hadjileontiadis, and S. M. Panas. “Separation of discontinuous adventitious sounds from vesicular using a wavelet-based filter” IEEE Trans. Eng., Vol. 44 pp. 1269-1281(1997)
[4]L. Vannuccini, M. Rossi, and G.. Pasquali. “A new method to detect crackles in respiratory sounds” Tchnology and Health care pp.75-79(1998)
[5]Y. Shabtai-Musih, B. G. James, G.. Noam. “Spectral content of forced expiratory wheezes during air, He, and SF6 breathing in normal humans” Journal of Applied Physiology, vol. 72, no. 2, pp. 629-635(1992)
[6]Kevin E. Forkheim, D. Scuse, and H. Pasterkamp. “A comparison of neural network models for wheeze detection” IEEE Conference pp. 214-219(1995)
[7]Homs-Corbera, J. A. Fiz, J. Morera, and R. Jane. “Time-frequency detection and analysis of wheezes during forced exhalation” IEEE Trans. Biomed Eng., Vol. 51 pp. 182-186(2000)
[8]S. Pittner and S. V. Kamarthi. “Feature extraction from wavelet coefficients for pattern recongnition tasks” IEEE Transaction on pattern analysis and machine intelligence pp.83-88(1999)
[9]Kandaswamy, C. S. Kumar, R. P. Ramanathan, S. Jayaraman, and N. Malmurugan. “Neural classification of lung sound using wavelet coefficients” Comput. Biol Ned. pp. 523-537(2004)
[10]M. F. Yeh, K. C. Chang, “A self-organizing CMAC network with gray credit assignment”, IEEE Trans. Syst., Man, Cybern. B, Cybern, Vol. 36, no. 3, pp.623-635(2006)
[11]J. S. Albus, “Data storage in the crerbellar model articulation controller (CMAC)”, J. Dyn. Syst., Meas., Contr., Trans. ASME, vol. 97, 99. 228-233(1975)
[12]J. S. Albus, Brains, Behavior and Robotics, New York: McGraw-Hill(1981)
[13]W. T. Miller and F. H. Glanz, “CMAC: An associative of a bipedal walking alternative to backpropagation”, Proc. IEEE, vol. 78, pp. 1561-1567(1990)
[14]F. H. Glanz, E. T. Miller, amd L. G. Kraft, “An overview of the CMAC neural network”, Proc. IEEE Neural Network Ocean Eng., Washington, DC, pp. 301-308(1991)
[15]H. Kim and C. S. Lin, “Use of adaptive resolution for better CMAC learning”, Int. Joint Conf. Neural Network, vol. 1, Baltimore, MD, pp. 517-522(1992)
[16]S. Haykin, Neural Network: A Comprehensive Foundation, New York: Macmillan College Publishing Company (1994)
[17]M. C. Su, N. Declaris, and T. K. Liu, “Application of neural network in cluster analysis”, Proc. IEEE Int. Conf. Syst., Man and Cybern., Orlando, FL, pp. 1-6(1997)
[18]Rafael C. Gonzalez and Richard E. Woods, Digital image processing 2/E. Prentice Hall. (2002)
[19]Steven Lehrer, Understanding Lung Sounds Saunders.(1984)
[20]陳冠宏,多種肺音自動辨識之研究,碩士論文,國立台灣大學生物產業電機工程學研究所,台北(1996)