(3.237.178.91) 您好!臺灣時間:2021/03/07 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐智誠
研究生(外文):Jhih-Cheng Syu
論文名稱:陣列型筆式大氣電漿炬數值研究
論文名稱(外文):Numerical Study of Pen-like Atmospheric Plasma Torches with Array type
指導教授:葛自祥葛自祥引用關係
指導教授(外文):Tzo-Hsiang Ko
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:數值模擬表面改質親水性電漿
外文關鍵詞:surface treatmentnumerical simulationhydrophilic propertyplasma torch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值方法探討單支與陣列型(兩支或四支)筆式大氣電漿炬之流場。大氣電漿可有效運用於材料表面處理,已成功應用於塑膠薄膜和聚乙烯材料表面親水性之改善。筆式大氣電漿炬之結構包含一中空圓柱形不銹鋼管,作為內電極;外圍以陶瓷管作為絕緣體,陶瓷管外另以一環形不銹鋼管,作為外電極。在內外電極間加入13.56 MHz 射頻(Radio Frequency﹐RF)之高頻電壓源,以誘導內外電極間產生表面放電。驅動氣體(氬氣﹐Argon)自不銹鋼管頂端進入,於內電極末端噴出時,將電漿氣體帶出,形成電漿噴流(Plasma jet)。
根據模擬結果,流場之主要特點如下:在電漿炬個數增加(兩支與四支)流場中,流場有相互吸引的情況。流場速度大小則隨筆式電漿炬個數增加而增加。電漿最高溫發生於內電極末端出口處內、中心軸兩側靠管壁位置。溫度分布則隨筆式電漿炬個數的增加而明顯提升。此外,電漿炬速度與溫度往下影響之範圍,亦有隨電漿炬個數增加,而增加向下游延伸之趨勢。
於改變輸入功率流場中,發現流場速度大小與溫度分布,則隨筆式電漿炬輸入功率增加而明顯增加。此外,電漿炬速度與溫度往下影響之範圍,亦有隨著輸入功率增加,而增加向下游延伸之趨勢。於改變驅動氣體流場時,發現流場速度大小與溫度分布,則隨筆式電漿炬驅動氣體流量增加而明顯降低。此外,電漿炬速度與溫度影響之範圍,亦有隨電漿炬流量增加,而減少向下延伸之趨勢。
本文模擬陣列型筆式大氣電漿炬所提供之流場資訊,可提供日後實際應用之參考。
The present paper carried out the numerical simulations of the flow field induced by a single or array type(dual or four) pen-like atmospheric plasma torches. The atmospheric plasma has been effectively used for material surface treatment, and successfully applied to improve material surface hydrophile properties of plastic or polyethylene film. The pen-like atmospheric plasma torch device consists of a hollow cylinder stainless steel tube as the inner electrode, a ring-like stainless steel cylinder holder as the outer electrode, and a ceramic tube which is between the inner and outer electrode in order to insulator the inner electrode and the outer electrode. 13.56 MHz RF high frequency voltage is applied between the inner and outside electrode and RF power induces surface discharge on the inner surface of the tube. The driving gas, Argon, flows from the top of the inner stainless steel tube to the end of the tube and the plasma from at the end of tube is dragged out then forms a plasma jet.
Three important operating conditions of the equipment, including the number of plasma torches, the power input and the driving gas flow rate, are varied to investigate their influences. The cases with different number plasma torches include one-, dual- and four- plasma torch cases. The power inputs from 40W, 60W an 90W are considered in the cases with dual-plasma torch cases. The driving gas flow rate is varied as 7, 9 and 11 L/min in the cases with dual-plasma torch cases.
From the results, it is found the highest temperature occurs at the exit of inner tube and near the inner tube wall in all cases. The plasma jet flows in the cases with dual- or four plasma torches are seen to attract with each other. As the number of torches increases, the highest temperature increases obviously. The influenced scope of the plasma jet also stretches toward the further downstream region in the cases with more plasma torches. As the power input increases, the influences can be seen as the same with those caused by the increase of the plasma torch number. However, as the flow rate of driving gas increases, it is found both of the highest temperature and the plasma jet influenced scope decrease, which are opposite with the influences from the plasma torch number and the power input. All these results obtained from the current study are worthwhile for the practical design work of the pen-like plasma torch equipment.
目錄
中文摘要 ………………………………………………………………… Ⅱ
Abstract ……………………………………………………………………… Ⅳ
致謝 ……………………………………………………………………… Ⅵ
目錄 ……………………………………………………………………… Ⅶ
圖目錄 ……………………………………………………………………… XI
符號說明 ………………………………………………………………… XV

第一章 緒論
1.1 前言 ………………………………………………………………… 01
1.2 文獻回顧 …………………………………………………………… 03
1.3 研究目的與方法 …………………………………………………… 04
1.4 本文主要內容 ……………………………………………………… 05

第二章 物理模型與數學模式
2.1 單支筆式大氣電漿炬物理模型 …………………………………… 06
2.2 陣列式(兩支與四支)筆式大氣電漿炬物理模型 ……………… 06
2.3 統御方程式 ………………………………………………………… 09
2.4 計算範圍與邊界條件 ……………………………………………… 14
2.4.1 計算範圍 …………………………………………………… 14
2.4.2 邊界條件 …………………………………………………… 15

第三章 數值方法
3.1 數值模擬分析 ……………………………………………………… 20
3.2 差分方程式 ………………………………………………………… 21
3.3 SIMPLEC法則 ……………………………………………………… 21
3.4 鬆弛係數 …………………………………………………………… 24
3.5 收斂標準 …………………………………………………………… 25

第四章 結果與討論
4.1 大氣電漿炬模擬值與實驗值之比較 ……………………………… 26
4.2 固定流量率(Q=9 L/min)與輸入功率(60 W)於電漿炬支數增加
之電漿流場探討 …………………………………………………… 27
4.3 單支與陣列(兩支及四支)電漿之中心軸向(r=0D)與偏離中心軸向(r=0.39D)之溫度與速度比較 ………………………………… 31
4.4單支與陣列式電漿於電漿出口前方距離(2D、4D及7D)
之切面流場探討 ……………………………………………… 34
4.5 兩支電漿炬在固定流量率(Q=9 L/min)於改變輸入功率
之電漿流場探討 ………………………………………………… 39
4.6 改變輸入功率之中心軸向(r=0D)與偏離中心軸向(r=0.39D)
之溫度與速度比較 ……………………………………………… 43
4.7 改變輸入功率於兩支電漿於出口前方距離(2D、4D及7D)
之切面流場探討 ………………………………………………… 46
4.8 兩支電漿炬在固定輸入功率(60W)於改變入口流量率
之電漿流場探討 ………………………………………………… 51
4.9 改變入口流量率之中心軸向(r=0D)與偏離中心軸向(r=0.39D)
之溫度與速度比較 ……………………………………………… 55
4.10 改變輸入流量率於兩支電漿於出口前方距離(2D、4D及7D)
之切面流場探討 ………………………………………………… 58

第五章 結論與未來發展
5.1 結論 ……………………………………………………………… 63
5.2 未來發展 ………………………………………………………… 65

參考文獻 ……………………………………………………………………… 66
參考文獻
【1】張家豪,魏鴻文,翁政輝,柳克強,李安平,寇崇善,吳敏文,噌錦清,蔡文發,鄭國川,「電漿源原理與應用之介紹」,物理雙月刊, 第二十八卷, 2期, 2006。
【2】Alfred Grill, “Cold Plasma in Materials Fabrication”, (IEEE Press, New York, 1994).
【3】堤井信力,「現代のプラズマ工学」,1997,講談社。
【4】賴耿陽編譯,電漿工學的基礎,復文書局,1985。
【5】T. Yamamoto, M. Okubo, Y. Matsumoto, N. Imai, Y. mori , 〝Hydrophobic and hydrophilic properties of glass surface using nonthermal plasma〞, Proc.4th ESA/IEJ Joint symposium in electrostatics. Kyoto, Japan, Sep.25~26, 2000.
【6】S. Matuda, S. Hosokawa, I. tochizawa, K. Akutsu, K. Kuwano, A. Iwata, 〝Surface treatment of plastic material by pulse corona induced plasma chemical process-PPCP〞, IEEE Trans.Ind.Appl.Vol.30, No2, pp. 377-380, 1994.
【7】T.H. Ko, C.M. Liu, Y. Matsuo, S. Ono, S. Teii, 〝Numerical Simulation and Experimental Study of a Pen-like Atmospheric Plasma Torch〞, International Journal of Thermal Sciences 45, pp. 681–690, 2006.
【8】D. A. Scott, P. Kovitya, G. N.Haddad, “Temperature in the plume of a dc plasma troch”, J. Appl. Phys. Vol. 66, pp. 5232, 1989.
【9】R. Westhoff, J. Szekely, “A Model of Fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma troch”, J. Appl. Phys. Vol. 70, pp. 3455, 1991.
【10】A. B. Murphy, P. Kovitya, “Mathematical model and laser-scattering temperature measurements of a direct-current plasma torch discharging into air”, J. Appl. Phys. Vol. 73, pp. 4759, 1993.
【11】A. B. Murphy, C. L. Arundell, “Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasma”, Plasma Chem. Plasma Process., Vol. 14, PP. 451-490, 1994.
【12】A. B. Murphy, T. Mcallister, “Destruction of ozone-depleting substances in a thermal plasma reactor”, Appl. Phys. Lett., Vol. 73, pp. 459, 1998.
【13】J. M. Bauchire, J. J. Gonzalez, A. Gleizes, “Modeling of a DC Plasma Torch in Laminar and Turbulent Flow”, Plasma Chem. Plasma Process., Vol. 17, PP. 409, 1997.
【14】A. M. Fudolig, H. Nogami, J. Yagi, “Moldeling of the Flow, Temperature and Concentration Fields in an Arc Plasma Reactor with Argon-Nitrogen Atmosphere”, ISIJ International Vol. 36, pp. 1222-1228, 1996.
【15】A. M. Fudolig, H. Nogami, J. Yagi, K. Mimura, M. Isshiki, “Preduction of Surface Temperature on Metal Beads Subjected to Argon-Hydrogen Transferred Arc Plasma Impingement”, ISIJ International Vol. 37, pp. 623-629, 1997.
【16】S. M. Aithal, V. V. Subramaniam, “Numerical mold of a transferred plasma arc”, J. Appl. Phys. Vol. 84, pp. 3506, 1998.
【17】W. M. Wang, S.R. Zhang, Y. S. Zhang, D. Y. Li, Y. H. Peng, 〝Numerical simulation for flow field of cooling water in plasma sprayed gun〞journal of Shang-Hai Jiao-Tong University, Vol. 38, No. 9, pp.1468, 2004.
【18】W. M. Wang, B. H. Wang, D. Y. Li, Y. H. Peng, Y. S. Zhang, 〝Numerical Simulation of Fluid Flow and Heat Transfer in a Plasma Sprayer〞Chinese journal of computational physics, Vol. 22, No. 1, pp.83-87, 2005.
【19】L. T. An, Y. Gao, 〝U-I Characteristics and Efficiency of Bi-Anode Plasma Torch〞Chinese journal of vacuum science and technology, Vol. 27, No. 2, pp.109, 2007.
【20】吳建宏,低溫高密度微電漿處理技術對高分子材料表面改質,碩士論文,中原大學醫學工程學系,1998。
【21】許高源,陣列式微波電漿對聚酯纖維聚醯胺纖維之表面功能性改質,碩士論文,中原大學醫學工程學系,2000。
【22】林明哲,電漿誘導聚酯纖維鍵結幾丁聚醣形成具抗菌功能性之表面,碩士論文,中原大學醫學工程學系,2003。
【23】林明哲、林尚明、黃茂全、卜深晏、蘇彥如、廖峻德,射頻電漿處理聚酯與聚丙烯不織布對親水性與抗菌性的影響,2003高分子年會暨研討會,Jan. 17-18, 2003,成大化工系。
【24】B.N. Chapman, 〝Glow Discharge Process Sputtering and Plasma Etching〞, Wiley; New York, 1980.
【25】K. Pochner, W. Neff, R. Lebert, 〝Atmospheric pressure gas discharges for surface treatment〞, Surface and Coating Technology, Vol. 74-75, pp. 394-398, 1995.
【26】T. Akitsu, H. Ohkawa, M. Ohnishi, M. Tsuji, M. Kogoma, 〝A study on anti-bacterial effect of non-thermal oxygen plasma and bio-medical application〞, Proceedings of the 3rd Asia-Pacific International Symposium on the Basic and Application of Plasma Technology, Taoyuan, Taiwan, ROC, pp. 139-144, 2003.
【27】Takayama, Shinako, Ono, Shigeru, Teii, Shinriki, 〝Surface treatment of plastics by an atmospheric pressure corona torch〞, Trans. IEE of Japan, Vol. 122-A, No. 8, pp. 722-728, 2002.
【28】J.L. Lee, C.M. Liu, K. Ting, W.K. Cheng, S. Takizawa, S. Arase, S. Ono,S. Teii, 〝Plasma treatment of polyethylene surface for metallizing by usingan atmospheric pressure corona torch〞, Proceedings of the 3rd Asia-Pacific International Symposium on the Basic and Application of Plasma Technology, Taiwan, ROC, pp. 237–242, 2003.
【29】J.L. Lee, C.M. Liu, K. Ting, W.K. Cheng, T. Tsuchida, K. Hiramatsu, 〝The modification of polyethylene surface by plasma treatment for metallizing using a low pressure RF discharge plasma〞, Proceedings of the 3rd Asia-Pacific International Symposium on the Basic and Application of Plasma Technology, Taoyuan, Taiwan, ROC, pp. 243-247, 2003.
【30】W.A. Fiveland, 〝Three-dimensional radiative heat-transfer solution by the discrete ordinates method〞, J. Thermodyn. Heat Transfer, Vol. 2, No. 4, pp. 209–316, 1988.
【31】J. Mostaghimi, M.I. Bolous, 〝Two-dimensional electromagnetic field effects in induction plasma modeling〞, Plasma Chem. Plasma Process. Vol. 9, pp. 25-44, 1989.
【32】B.E. Launder, D.B. Spalding, 〝The numerical computation of turbulent flows〞, Comput. Methods Appl. Mech. Engrg. 3, pp. 269-289, 1974.
【33】S.V. Patankar, 〝Numerical Heat Transfer and Fluid Flow〞, Hemisphere Publishing Corporation, New York, 1980.
【34】J.P. Van Doormaal, G.D. Raithby, 〝Enhancements of the SIMPLE method for Predicting Incompressible Fluids Flows〞, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
【35】D.T. Gawne, T. Zhang, B. Liu, 〝Computational analysis of the influence of a substrate, solid shield and gas shroud on the flow field of a plasma jet〞, Surface Coatings Technol, Vol. 153, pp. 138–147, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔