(44.192.112.123) 您好!臺灣時間:2021/03/09 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林兆旋
研究生(外文):Jhao-Syuan Lin
論文名稱:應用在骨骼組織修補之生醫陶瓷與塑膠複材混練及成型研究
論文名稱(外文):Study on kneading and molding of bioceramic and bioplastic compositiesfor a application in repairing of bone tissues
指導教授:黃進光黃進光引用關係
指導教授(外文):Ching-Kuang Huang
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:射出成型混練骨釘PLAHAP
外文關鍵詞:injection moldingkneadingbone screPLAHAP
相關次數:
  • 被引用被引用:2
  • 點閱點閱:348
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
初期骨骼損傷皆植入金屬骨釘為主,但金屬固定物多需於手術後再次開刀取出,時間長短依病人恢復情況而有所不同,將造成患者的二度傷害,對於骨骼疏鬆患者,金屬材料無法植入患者骨骼組織內作為補強之用。為解決金屬植入物的缺點,以生醫陶瓷/可降解塑膠複材製作骨釘,有補強骨骼組織的功用,不需從患者身上取出,既經濟實惠又可省去患者二次開刀之傷害。
本研究以生醫陶瓷/可降解塑膠複材之骨釘替代金屬植入物,探討均質混練與生醫複材降解速率對機械性質的關係,利用射出成型技術將生醫複材製成骨釘,作為骨骼手術之固定物。
生醫陶瓷/可降解塑膠複材由羥基磷灰石(HAP)與聚乳酸(PLA)組成,研究製作出可替代金屬骨釘之複合材料。依據M.Wang等人之文獻添加補強材之比例羥基磷灰石以重量10wt%、20wt%、40wt%含量添入聚乳酸基材,複合材料之製程參數由試驗得到最佳參數,試片根據ASTM標準已成功製備射出成型的拉伸、衝擊試驗模具;同時利用射出成型技術已成功製備羥基磷灰石/聚乳酸複材的植入性骨釘。
複材的微結構和性質由SEM與萬能試驗機之評估得到比較成果。研究實驗結果10wt%、20wt%、40wt%複材之機械性質與降解實驗得到:抗拉強度以20wt%複材表現優異,其抗拉強度為70.09MPa。楊氏係數以20wt%複材表現最好,其楊氏係數為539MPa。抗衝擊強度以20wt%複材表現佳,其抗衝擊強度為2.79kgf.cm/cm。彎曲強度以10wt%複材顯示最好,其彎曲強度為130MPa。
降解試驗結果各複材無明顯重量損失,實驗過程中因材料吸收水份造成,比較各複材之楊氏係數以20wt%複材最好。骨釘之彎曲強度以10wt%複材抗彎強度最佳;總結40wt%複材硬度高耐磨耗的性質但其他的機械性質卻下降,但由於目標為填補骨骼內之缺損孔洞仍需以高含量的複材製作骨釘較適合。
In earlier day’s implantating metal screws in bone injury tissues is required. To remove the implanted metal we have to perform an operation again after surgery. Patients in accordance with the restoration of long time will result in harm due to the metal implants. Patients with osteoporotic bone can’t use metal materials for implantation with bone tissue for the use of reinforcement. To address the out comings of biomedical ceramic and biodegradable plastic materials instead of metal implants, production of complex bone screws which enhances the reinforcement of the function of the bone tissue and need not to be removed from a patient. It is not only for economic benefits but also to eliminate the second surgery in patients with injury.
In this study, biomedical ceramic and biodegradable plastic complex bone screw is used for implants instead of metal, presently homogeneous mixing is done with complex to gain mechanical property relation. The role of injection molding technique for biomedical complex to make the bone screw, which reinforces the bone operation.
Biomedical ceramic and biodegradable plastic complex materials were prepared from the base of hydroxyapatite (HAP) and polylactic acid (PLA) to produce an alternative composite bone screw instead of metal screw. In accordance with M.Wang literature in the study we focussed to increase the proportion of reinforcement of composite material. The composition of hydroxyapatite were 10wt%, 20wt%, 40wt%, required amount of PLA substrate was mixed with the HAP compositions and insertion of the mixed solution into the mold results in manufacturing the composites by optimizing the parameters for various test. In accordance with ASTM standard, test piece has been successfully prepared by using injection molding with tensile and impact test. At the same time using injection molding technology with hydroxyapatite and polylactic acid, composites of bone screw implantation has been successfully prepared.
Composites of micro-structure and the feedstock of the Scanning Electron Microscopy (SEM) with the universal testing machine provide good results in the assessment. We have investigated the mechanical properties through material degradation experiment and found that tensile strength for 20wt% of HAP is the best performance of complex materials whose tensile strength was about 70.09MPa. The data from Young's modulus for 20wt% of HAP provides to be the best performance of complex materials, whose Young's modulus was about 539MPa. 20wt% of HAP have an impact strength with good performance of complex materials, and the impact strength was found to be 2.79kgf.cm/cm. 10wt% of HAP ‘s flexural strength restoration material is found to be best and the bending strength was130MPa.
Degradation of complex material for the test results provides no significant weight loss and the experiment caused by absorption of water, compared with the Young’s modulus of the complex material to 20wt% of HAP’ s Young’s modulus was reported as the best complex material. Bending strength of bone screws to 10wt% HAP gives the best flexural strength composites .
In summary,40wt% with complex material of high hardness and wear properties plays an important in the mechanical properties of the other declined, but our goal is to fill the bone defect within the required holes to high levels of complex material more suitable for the production of bone screws.
目錄
中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 xi
第一章 緒論與研究背景 1
1.1 前言 1
1.2 生醫骨材料發展 1
1.3 生醫陶瓷材料 2
1.4 高分子醫用材料 4
1.5 論文架構 8
1.6 研究動機與方法 8
第二章 文獻回顧 10
2.1 金屬生醫材料 10
2.2 生醫塑膠/生物可降解塑膠 10
2.2.1 生醫塑膠 10
2.2.2 生物可降解塑膠 11
2.3 生醫陶瓷種類 11
2.4 生醫陶瓷與可降解塑膠複材混練成型 12
2.5 生醫塑膠骨釘製作 15
2.6 植入動物骨骼實驗 16
2.7 陶瓷粉末混練 17
2.8 模仁、射出成型 17
2.9 混練原理 17
2.9.1 分配式混練法 18
2.9.2 分散式混練法 18
第三章 實驗設備與實驗方法 20
3.1 概述 20
3.2 生醫高分子複材製備設備與材料 22
3.2.1 基材 22
3.2.2 補強材料 23
3.3 成型模具 24
3.3.1 拉伸、衝擊試片模具 24
3.3.2 骨釘模具 27
3.4 材料試驗 29
3.4.1 混練試驗 29
3.4.2 射出成型之成型條件範圍 30
3.4.3 拉伸試驗 30
3.4.4 衝擊試驗 32
3.4.5 三點彎曲試驗 33
3.4.6 試片體外降解環境之模擬試驗 34
3.4.7 骨釘體外降解環境之模擬試驗 36
3.4.8 試片、骨釘尺寸精度探討 37
3.5 實驗設備與儀器 38
3.6 品質量測設備 39
第四章 實驗結果與討論 48
4.1 混練試驗 48
4.2 射出成型試驗結果 53
4.3 試片、骨釘尺寸精度探討結果 57
4.4 拉伸試驗結果 59
4.5 衝擊試驗結果 63
4.6 三點彎曲試驗結果 66
4.7 降解試驗結果 71
4.7.1 體外降解環境之模擬試驗(試片) 71
4.7.2 體外降解環境之模擬試驗(骨釘) 88
第五章 結論 106
參考文獻 108
符號說明 115
附錄 116
[1] 高長有、馬列,醫用高分子材料,北京:化學工業出版社,(2006)。
[2] 李寶玉,生物醫學材料,北京:化學工業出版社,第1~10頁(2003)。
[3] 馬建標,功能高分子材料,北京:化學工業出版社,第320~321頁(2000)。
[4] 闕山璋,「骨科植入物生醫材料及器材」,科儀新知,第十三卷,第一期(1991)。
[5] K. Jacob,“HAPndbook of biomedical engineering”, Academic press, Inc (1988).
[6] 葉牧耕,生醫材料與組織工程產品之開發,生物產業與製藥產業(1999)。
[7] S. K. Yen,"CHAPracterization of the electrolytic ZrO2 Coating on AISI 316L Stainless," Journal of The electrochemical Society, 146, 4, 1392~1936 (1999).
[8] S. K. Yen, T.Y.Huang,“CHAPracterization of the electrolytic ZrO2 Coating on Ti-6Al-4V”, Materials chemistry and PHysics, 56, P.214~221 (1998).
[9] S. K. Yen,M.J. Guo and H.Z. Zan,“CHAPracterization of electrolytic ZrO2 Coating on Co-Cr-Mo implant alloys of hip prosthesis”, Biomaterial Publish (2000).
[10] 洪敏雄、林峰輝、王盈錦,生醫陶瓷‧陶瓷技術手冊(下),中華民國產業科技發展協進會(1994) 。
[11] L.L. Hench and E. C. Ethridge , Biomaterial A cademic Press. Inc.(1982).
[12] D. M. Roy, S. K. LinneHAPn,“Hy-droxyapatite formed from coral skeletal carbonate by hydrothermal excHAPnge”, Nature, 247, 220-222 (1974).
[13] 王靜梅、姚松年,生物材料及其仿生學的研究進展與展望,材料研究學報,14 (4),第337~343頁(2000)。
[14] G. Daculsi,“Biotechnology for Calcium PHospHAPte Bioactive Ceramics in Bone Repair”, The Chinese Society for Materials, Annual Meeting Workshop (1999).
[15] 曹常在、劉志民、向欣芳等,我國醫用塑料產業的現狀及發展,中國塑料,16 (1),第1~6頁(2002)。
[16] 傅皓、李賽、李洁準等,生物降解型聚氨酯在醫學中的應用,生物醫學工程學雜誌,20 (2),第348~351頁(2003)。
[17] L A Poole-Warren, Martin D J, Schindhelm K, Meijs G F,“Polymeric biomaterials”, Materials Forum, 21 (4) ,241~256 (1997).
[18] 任杰,可降解與吸收材料,北京:化學工業出版社,第114~113頁(2003)。
[19] 俞耀庭、張興棟,生物醫用材料,天津:天津大學出版社,第40~71頁(2000)。
[20] 黃義侑,生醫材料概論,台大醫學院,醫學工程研究所。
[21] D K Gilding,Reed A M,“Biodegradable Polymers for Use in Surgery-Polylycolic /Poly ( Actic Acid ) Ho-mo-and Copolymers”, Polymer, 20,1459~1464 (1970).
[22] T Miyata, Masuko T,“MorpHology of poly (L-lactide) solution-grown crystals”, Polymer, 38 (16) ,4003~4009 (1997).
[23] M Long., Rack H.J,“Titanium alloys in total joint replacement-a materials science perspective”, Biomaterials, 19, 1621-1639 (1998).
[24] J. Breme, Zhou Y., Groh L,“Development of a titanium alloy suitable for an optimized coating with hydroxyapatite”, Biomaterials, 16,239-244 (1995).
[25] M Wang., Hench L.L., Bonfield W,“Bioglass/high density polyethylene
composite for soft tissue applications: preparation and evaluation”, J Biomed
Mater Res, 42(4), 577-586 (1998).
[26] S.Ramakrishna, J.Mayer, E.Wintermantel, Kam W.Lwong,“Biomedical applications of polymer-composite materials:a review”,Composites Science and Technology,61,1189-1224 (2001).
[27] M Wang., Bonfield W,“Chemically coupled hydroxyapatite-polyethylene composites: structure and properties”, Biomaterials,22(11), 1311-1320 (2001).
[28] R.A Sousa., Reis R.L., CunHAP A.M., Bevis M.J,“Processing and Properties of boneanalogue biodegradable and bioinert polymeric composites”, Compos Sci Technol, 63(3-4),389-462 (2003).
[29] R.K Roeder. Sproul M.M., Turner C.H,“Hydroxyapatite whiskers provided improved mecHAPnical properties in reinforced polymer composites”, J Biomed Mater Res Part A,67A(3), 801-812.7 (2003).
[30] K Ryan. Roeder, MicHAPel M. Sproul, CHAPrles H. Turner,“Hydroxyapatite whiskers provide improved mecHAPnical properties in reinforced polymer composites”, J Biomed Mater Res Part A,67A(3), 801-812 (2003).
[31] C.Doyle, Tanner E.T., Bonfield W,“In vitro and vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite”, Biomaterials, 12, 841-847 (1991).
[32] Y.Doi, Kitamura S., Abe H,“Microbial synthesis and cHAPracterization of poly (3-hydroxybutyrate–co-3-hydroxyhexanoate)”, Macromolecules,25,4822-4828
(1995).
[33] Z.B Luklinska., Bonfield W,“MorpHology and ultrastructure of the interface between hydraxyapatite polyhydroxybutyrate composite implant and bone”, J Mater Sci Mater Med, 8, 379-383 (1997).
[34] K.A. Jockisch, Brown S.A., Bauer T.W., Merrit K,“Biological response to chopped carbon-fiber reinforced PEEK”, J Biomed Mater Res, 26, 133-146 (1992).
[35] J.C Middleton., Tipton A.J,“Synthetic biodegradable polymers as orthopaedic devices”, Biomaterials, 21, 2335-2346 (2000).
[36] S Yang., Leong K.F., Du Z., Chua C.K,“The design of scaffolds for use in tissue engineering. Part 1 Traditional factors”, Tissue Eng,7, 679-689 (2001).
[37] K Rezwan., Chen Q.Z., Blaker J.J., Boccaccini A.R,“Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering”, Biomaterials, 27(18), 3413-3431 (2006).
[38] B.L Seal., Otero T.C., Panitch A,“Polymeric biomaterials for tissue and organ regeneration”, Mater Sci Eng: R: Rep, 34, 147-230 (2001).
[39] 陳長志,聚乳酸系骨釘骨板之短期活體內組織反應與降解變化,碩士論文,台北醫學大學口腔醫學院,台北(2002)。
[40] M.J Yaszenski., Payne R.G., HAPyes W.C., Langer R., Aufdemorte T.B., Mikos A.G, “The ingrowth of new bone tissue and initial mecHAPnical properties of a degrading polymeric composite scaffold”, Tissue Eng, 1, 41-52 (1995).
[41] P.A Gunatillak., Adhikari R,“Biodegradable synthetic polymers for tissue engineering”, Eur Cells Mater J, 5, 1-16 (2003).
[42] S.J Peter., Lu L., Kim D.J., Stamatas G.N., Miller M.J., Yaszemski M.J,“Effects of transforming growth factor beta-1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates”, J Biomed Mater Res, 50, 452-462 (2000).
[43] W. Bonfield., Grynpas M.D., Tully A.E., Bowman J., Abram J,“Hydroxyapatite reinforced polyethylene – a mecHAPnically compatible implant material for bone replacemwnt”, Biomaterials, 2, 185-186 (1981).
[44] Abu Bakar M.S., Cheang P., Khor K.A,“MecHAPnical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites”, Composites Science and Technology,63 (3),421-425 (2003).
[45] M.Wang,“Developing bioactive composite materials for tissue replacement”, Biomaterials, 24 (13), 2133-2151 (2003).
[46] B. Vázquez, Ginebra M.P., Gil X., Planell J.A., Román J.S,“Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol)”, Biomaterials, 26(20), 4309-4316 (2005).
[47] Y. Liu, Wang M,“Developing a composite material for bone tissue repair”, Current Applied PHysics, 7 (5),547-554 (2007)
[48] L.Fang, Leng Y., Gao P,“Processing and mecHAPnical properties of HAP/UHMWPE nanocomposites”, Biomaterials,27(20), 3701-3707 (2006).
[49] Abu Bakar M.S., Cheng M.H.W., Tang S.M., Yu S.C., Liao K., Tan C.T., Khor K.A., Cheang P,“Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants”, Biomaterials, 24 (13),2245-2250 (2003).
[50] M Wang., JosepH R., Bonfield W,“Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morpHology”, Biomaterials, 19(24), 2357-2366 (1998).
[51] J.A JuHAPsz., Best S.M., Brooks R., Kawashita M., Miyata N., Kokubo T, “MecHAPnical Properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size”, Biomaterials, 25(6), 949-955 (2004).
[52] L.M Mathieu., Bourban P.E., Manson J.A.E,“Processing of homogeneous ceramic/polymer blends for bioresorbable composites”, Composites Science and Technology,66 (11), 1606-1614 (2006).
[53] M. HAPshimoto, Takadama H., Mizuno M., Kokubo T,“EnHAPncement of mecHAPnical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment”, Materials Research Bulletin, 41(3), 515-524 (2006).
[54] L.E. Claes, Ignatius A.A., Rehm K.E., Scholz C,“New bioresorbable pin for the reduction of small bony fragments: design, mecHAPnical properties and in vitro degradation”, Biomaterials, 17,1621-1626 (1996).
[55] S.L Evans., Gregson P.J,“Composite technology in load-bearing orthopaedic implants”, Biomaterials,19, 1329-1342 (1998).
[56] M Walton, Cotton N.J,“Long-term in vivo Degradation of Poly-L-lactide (PLLA) in Bone”, Journal of Biomaterials Applications, 21, 395 - 411 (2007).
[57] C. Balçik, Tokdemir T., Şenköylü A., Koç N., Timuçin M., Akin S., Korkusuz P., Korkusuz F,“Early weight bearing of porous HAP/TCP (60/40) ceramics in vivo: A longitudinal study in a segmental bone defect model of rabbit”, Acta Biomaterialia, 3(6), 985-996 (2007).
[58] S.S Kim., Park M.S., Jeon O., Choi C.Y., Kim B.S, “Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering”, Biomaterials, 27(8), 1399-1409 (2006).
[59] A Prokop., Jubel A., HAPHn U., DietersHAPgen M., Bleidistel M., Peters C., Hofl A., Rehm K.E,“A comparative radiological assessment of polylactide pins over 3 years in vivo”, Biomaterials, 26, 4129-4138 (2005).
[60] R.Y. Wu, Wei W.C.J, “De-agglomeration of feedstocks with granule TZP powder”, J. Europ. Ceram. Soc,24(14), 3653-3662 (2004).
[61] R.Y Wu., Wei W.C.J,“Kneading beHAPvior and homogeneity of zirconia feedstocks for micro injection molding”, J. Am. Ceram. Soc, 88(7), 1734-1739 (2005).
[62] M.S Despa., Kelly K.W,“Injection molding of polymeric LIGA HAPRMs”, Microsystem Technologies, 6, 60-66 (1999).
[63] C.K Huang , Lee C.S., Yang C.T,“Using polymer compounds in place of metal material to make cost-effective parts”, Journal of Applied Polymer Science, 102(2), 1645-1652 (2006).
[64] 林弘偉,聚乙烯混煉木粉加工改質製程之研究,碩士論文,東海大學化學工程學系,台中(2002)
[65] 林仕笳,聚苯乙烯/蒙脫土有機無機奈米複合材料之研究,碩士論文,中國文化大學材料科學與製造研究所,台北(2002)。
[66] 汪建民主編,陶瓷技術手冊,中華民國粉末冶金協會、中華民國產業科技發展協進會出版,88年八月在版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔