跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉名揚
研究生(外文):Ming-Yang Liu
論文名稱:基於紋理及深度資訊的全對焦影像建立
論文名稱(外文):Generating the all-in-focus image based on texture and range information
指導教授:賈叢林賈叢林引用關係
指導教授(外文):Tsorng-Lin Chia
學位類別:碩士
校院名稱:銘傳大學
系所名稱:資訊傳播工程學系碩士班
學門:傳播學門
學類:一般大眾傳播學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:智慧型相機影像離焦全對焦影像遮蔽邊緣
外文關鍵詞:image defocusingAll-in-focus imageoccluded edgethe smart digital camera
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
隨者科技的進步,讓數位相機的功能種類越來越強大,產生了許
多「傻瓜」相機,這種智慧型的相機能讓拍照更加的方便迅速,但使
用者操作相機時還是需要考慮對焦的問題,因為到目前為止,失焦的
照片還是無法補救。本研究利用全對焦影像的概念,在拍攝時不用考
慮對焦的問題,事後才在電腦上決定對焦。透過紋理邊緣與遮蔽邊緣
在焦距與顏色上變化的不同,能夠區分紋理邊緣與遮蔽邊緣。判斷每
一個像素的對焦焦距及正確顏色,記錄成一張全對焦影像,同時也能
改善遮蔽邊緣周圍的像素顏色。對焦處理則可延遲至事後處理,並且
超越光學對焦之限制,允許相片能夠多點對焦。
With the progress of technological development, the still digital
camera has been integrated with a lot of intelligent functions. Although
the intelligence digital camera enables to accelerate the speed for taking
pictures and becomes more convenient, customers still have to worry the
focusing problem because the defocusing photo cannot be recovered by
current technologies. In this thesis, a smart camera is developed by means
of the concept of the all-in-focus image that it is not necessary to regard
the focusing problem in the duration of taking a picture. It allows the user
to adjust later the focusing situation on the computer. First, the method to
separate the texture edge and the occluded edge in the space-focus color
map is designed based on the texture and range information. Next, the
all-in-focus image is established by collecting the proper focus and color
of each pixel. The purposed method can also recover the color of the
pixel near the occluded edge. To break optic limitation, multi-object
locating in the different range can be in focus. The experimental results
show the purposed method that is effective and correct.
中文摘要 i
英文摘要 ii
誌謝 iii
表目錄 vii
圖目錄 viii
第一章 序論 1
1.1 研究動機與背景 1
1.2 研究問題 4
1.3 相關研究 7
1.4 研究目的 8
1.5 論文架構 8
第二章 相關理論 9
2.1 可控制焦距攝影機 9
2.2 對焦量測 12
2.3 影像離焦 13
第三章 邊緣與遮蔽邊緣 17
3.1 特性分析 17
3.2 尋找邊緣的對焦點 24
3.3 蝴蝶形區域偵測 29
第四章 全對焦影像 37
4.1汙染區域的決定 37
4.2深度圖的建立 39
4.3全對焦影像的製作 42
第五章 影像離焦 44
5.1 影像離焦的做法 44
5.2 多點對焦的處理 45
第六章 實驗結果 47
6.1 實驗環境與設備 47
6.2 攝影機校正 48
6.3 全對焦影像 50
6.4 多點對焦影像 51
第七章 結論與未來方向 55
7.1 結論 55
7.2 未來方向 56
參考文獻 58
[1] K. C. Ng, P. A. Neow, and M. H. Ang, “Practical Issues in Pixel-based Autofocusing for Machine Vision,” in Proc. of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, May 21-26, 2001, pp. 2791-2796.
[2] J. He, R. Zhou, and Z. Hong, “Modified Fast Climbing Search Auto-focus Algorithm with Adaptive Step Size Searching Technique for Digital Camera,” IEEE Transactions on Consumer Electronics, vol. 49, no. 2, May 2003, pp. 257-262.
[3] F. Li and H. Jin, “A Fast Auto-focusing Method for Digital Still Camera,” in Proc. of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, August 18-21, 2005, vol. 8, pp. 5001-5005.
[4] Q. Wei, “Converting 2D to 3D: A Survey,” Research Assignment, Information and Communication Theory Group (ICT), Delft University of Technology, December 2005.
[5] V. Aslantas, “Depth from Automatic Defocusing,“ Optics Express, vol. 15, Issue 3, February 2007, pp. 1011-1023.
[6] J. Ens and P. Lawrence, “An Investigation of Methods for Determining Depth from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, Issue 2, 1993, pp. 97 – 108.
[7] S. K. Nayar, “Shape from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, Issue 8, November 1989, pp. 824 – 831.
[8] N. Asada, H. Fujiwara, and T. Matsuyama, “Seeing behind the Scene: Analysis of Photometric Properties of Occluding Edges by the Reversed Projection Blurring Model,” in Proceedings of the Fifth International Conference on Computer Vision, 20-23 June 1995, pp. 150-155.
[9] N. Asada, H. Fujiwara, and T. Matsuyama, “Analysis of Photometric Properties of Occluding Edges by the Reversed Projection Blurring Model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, February 1998, pp. 155-167.
[10] Y. Xiong and S. Shafer, “Depth from Focusing and Defocusing,” in IEEE Conference on Computer Vision and Pattern Recognition, 1993, pp. 68-73.
[11] B. K. P. Horn, “Focusing,” MIT Artificial Intelligence Laboratory, Memo no. 160, May 1968.
[12] E. Krotkov, “Focusing,” International Journal of Computer Vision, vol. 1, 1987, pp. 223-237.
[13] J. F. Schlag, A. C. Sanderson, C. P. Neumann, and F. C. Wimberly, “Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control,” Carnegie Mellon University, CMU-RITR-83-14, Aug. 1983.
[14] J. M. Tenenbaum, “Accommodation in Computer Vision,” Ph.D. Dissertation, Standford University, 1970.
[15] R. A. Jarvis, “A Perspective on Range Finding Techniques for Computer Vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 5, no. 2, Mar. 1983, pp. 122-139.
[16] M. Subbarao and J. K. Tyan, "Selecting the Optimal Focus Measure for Autofocusing and Depth-from-Focus," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, August 1998, pp. 864-870.
[17] T. Darrell and K. Wohn, “Pyramid Based Depth from Focus,” in Proceedings of 1988 Computer Society Conference on Computer Vision and Pattern Recognition, 5-9 June 1988, pp. 504-509.
[18] A. P. Pentland, “Depth of Scene from Depth of Field,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no.4, 1982, pp. 523-531.
[19] S. H. Lai, C. W. Fu, and S. Chang, “A Generalized Depth Estimation Algorithm with a Single Image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, 1992, pp. 405-411.
[20] R. C. Gonzalez and P. Wintz, Digital Image Processing, second edition, Addison-Wesley, 2002.
[21] X. C. Chen, S. Yang, and Y. J. Wang “Recovering 3D Shape and Texture from Continuous Focus Series Using a Polarized Filter,” in Proceeding of the International Conference on Image Processing, 16-19 Sep. 1996, pp. 741-744.
[22] S. Battiato, S. Curti, M. L. Cascia, M. Tortora, and E. Scordato, “Depth Map Generation by Image Classification,” in Proceedings of the SPIE, vol. 5302, April 2004, pp. 95-104.
[23] M. G. Medina, M. Medina, D. Baez-Lopez, J. Rodriguez, and L. G. Guerrero-Ojeda, “Focusing and Defocusing Vision System (SIVEDI),” in Proceedings of the 15th International Conference on Electronics, Communications and Computers, February 2005, pp. 321-326.
[24] M. Sonka, V. Hlavac, and R. Boyle, Image Processing Analysis and Machine Vision, second edition, International Thomson, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top