(34.237.52.11) 您好!臺灣時間:2021/05/18 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭佳元
研究生(外文):Chia-Yuan Hsiao
論文名稱:陰極電弧沉積CrTiAlSiN薄膜之高溫性能研究
論文名稱(外文):High Temperature Stability of CrTiAlSiN Nanocomposite Thin Films
指導教授:張銀祐
指導教授(外文):Yin-Yu Chang
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:138
中文關鍵詞:陰極電弧蒸鍍、高溫氧化、硬質鍍膜、奈米結構
外文關鍵詞:Cathodic arc evaporationHard coatingsOxidationNano structure
相關次數:
  • 被引用被引用:3
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要對CrTiAlSiN多元合金氮化薄膜進行高溫氧化行為之探討,實驗設備使用陰極電弧沉積鍍製CrTiAlSiN奈米結構薄膜,靶材為鈦靶、鉻靶及鋁矽(Al88Si12)合金靶,以矽晶片為基材,控制不同沉積功率改變CrTiAlSiN薄膜成份及結晶結構。本研究目的探討鈦靶及鉻靶在不同功率下,所形成的CrTiAlSiN成份的機械性值差異、結構改變等,同時探討薄膜之高溫氧化行為模型。在高溫氧化退火中,使用儀器為管型爐,將薄膜置於空氣的氣氛下,時間長達兩小時,分別在700~1000℃進行高溫氧化熱處理。
本實驗使用場發射電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察薄膜之斷面及表面形貌微結構改變情形,使用X光繞射分析儀(XRD)做薄膜高溫氧化前後之結構分析,以高解析電子能譜儀(HRXPS),及二次離子質譜儀(SIMS)做高溫氧化後之縱深成份分析及鍵結分析,成分分析以高解析度場發射電子微探儀(EPMA),同時以奈米壓痕測試儀(Nanoindenter)進行薄膜之硬度與楊氏係數量測分析,及使用熱重分析儀(TGA)觀察試片在高溫氧化時,所產生之變化影響之分析。
研究結果顯示,CrTiAlSiN薄膜高溫氧化會形成氧化層結構,(Al+Si)含量會影響到薄膜熱穩定性,因形成Al2O3、SiO2與Cr2O3,可先有效阻礙氧繼續擴散,結果得到(Al+Si)含量最高的Cr0.36Al0.57Si0.07N薄膜有最好的熱穩定性及機械性質。
The high temperature oxidation behavior of CrTiAlSiN coatings was studied. These coating were deposited on silicon substrates by us cathodic-arc deposition system with lateral rotating arc cathodes. Titanium, Chromium and Al88Si12 cathodes were used for the deposition of CrTiAlSiN coatings. For the high temperature oxidation test, the coated samples were annealed at high temperature ranging from 700℃-1000℃ in air for 2 hours. In addition, structure characterization was conducted using a Scanning Electron Microscope (SEM), and an X-ray diffraction (XRD) instrument. Mechanical properties including Young’s modulus and hardness were measured by nano-indentation. The chemical variation and bonding structures of the oxidized coatings were identified by a high- resolution X-ray photoelectron spectrometer (XPS). It indicated that CrTiAlSiN with higher Cr, Al, and Si contents possessed superior oxidation resistance than TiAlN, due to the amorphous SiNx phase existed. The different oxidation mechanisms of the deposited CrTiAlSiN at high temperature are developed in this study.
致謝 I
摘要 III
Abstract V
目錄 VI
圖目錄 X
表目錄 XVI
第1章 前言 1
第2章 文獻回顧 4
2.1 薄膜沉積技術 4
2.1.1 物理氣相沉積(PVD) 6
2.1.2 化學氣相沉積(CVD) 6
2.2 陰極電弧蒸鍍技術 7
2.2.1 陰極電弧沉積技術與原理 8
2.2.2 陰極電弧沉積技術的特點 11
2.2.3 陰極電弧沉積微粒及微孔隙的形成 11
2.2.3.1 微粒的形成原因及影響 11
2.2.3.2 改善微粒方法 14
2.2.4 真空電弧的產生 15
2.2.5 離子轟擊效應 16
2.2.6 薄膜沉積原理與成長機制 17
2.2.7 薄膜微結構 20
2.3 奈米複合薄膜 23
2.3.1 奈米級材料之性質 23
2.3.2 奈米複合薄膜 25
2.4 氧化理論 27
2.4.1 氧化機制 28
2.4.2 擴散機制 29
2.5 相轉換動力學 31
2.5.1 晶粒成長及反應速率 31
2.5.2 相轉換反應速率 32
2.6 硬質薄膜 34
2.6.1 CrN/AlN多層膜 34
2.6.2 CrAlSiN薄膜 36
2.6.3 TiAlSiN薄膜 39
第3章 實驗方法 42
3.1 實驗流程圖 42
3.2 薄膜製備與鍍膜系統 43
3.2.1 製備CrTiAlSiN 薄膜 43
3.2.2 高溫氧化系統 46
3.3 分析儀器 47
3.3.1 場發射掃描式電子顯微鏡 47
3.3.2 X光繞射分析儀 49
3.3.2.1 晶粒大小計算 51
3.3.2.2 殘留應力量測 51
3.3.3 附著性分析 54
3.3.4 奈米壓痕測試儀 55
3.3.5 化學分析電子能譜儀 57
3.3.6 飛行時間二次離子質譜儀 58
3.3.7 TGA熱重分析儀 61
3.3.8 穿透式電子顯微鏡 62
第4章 結果與討論 65
4.1 CrTiAlSiN薄膜微結構分析 65
4.1.1 X光繞射結晶相分析 65
4.1.2 XPS化學成分組態分析 68
4.1.3 EDS、EPMA成分分析 70
4.1.4 SEM結構分析 72
4.2 CrTiAlSiN薄膜機械性質分析 74
4.2.1 奈米壓痕硬度分析 74
4.2.2 薄膜殘留應力分析 76
4.2.3 附著性分析 77
4.3 CrTiAlSiN薄膜高溫氧化行為研究分析 79
4.3.1 X光繞射分析 79
4.3.2 EDS成分分析 81
4.3.3 SEM結構分析 85
4.3.3.1 表面結構 85
4.3.3.2 截面結構 89
4.3.4 TEM微結構與結晶相分析 94
4.3.5 XPS化學成分組態分析 97
4.3.6 SIMS縱深成分分布 103
4.3.7 TGA氧化成分分佈高溫 111
第5章 結論 114
參考文獻 116
圖目錄
圖2.1 薄膜沉積技術 5
圖2.2 薄膜運用與製程設計 5
圖2.3 陰極電弧沉積系統 8
圖2.4 陰極電弧電漿 10
圖2.5 陰極電弧弧源 10
圖2.6 微粒產生過程 13
圖2.7 (a)電弧蝕刻靶材表面形貌、(b)微坑粒射出情形、(c)微粒形貌 13
圖2.8 (a)微粒(macroparticle)與 (b)微孔隙(microvoid)夾雜於沉積膜中 13
圖2.9 電弧運動軌跡示意圖(a)散亂電弧模式(b)磁控電弧模式 15
圖2-10 常用元素電弧放電特性圖 15
圖2.11 轟擊能量對結構影響 17
圖2.12 薄膜成長機制 20
圖2.13 物理氣相沉積之薄膜結構模型 21
圖2.14 溫度與偏壓對結構區模型的影響 22
圖2.15 奈米材料零維、一維、二維示意圖 24
圖2.16 奈米複合薄膜CrTiAlN/a-Si3N4示意圖 26
圖2.17多層膜結構的韌化機制 26
圖2.18氧化反應速率示意圖 29
圖2.19 CrN薄膜和各種Al靶功率製程的CrN/AlN多層膜的硬度值比較 35
圖2.20 CrN塗層和各種Al靶功率CrN/AlN多層膜的增重分析,與氧化試驗溫度在900℃,時間為20 小時,通入氣體空氣 35
圖2.21 CrAlSiN在鋼基材上面增加重量和氧化的時間曲線 38
圖2.22 CrAlSiN薄膜的KP價值,相對於其他公佈的數據,在CrAlSiN的氧化模形成低於TiN和CrN薄膜,二氧化鈦的形成和Cr2O3形成動力學 39
圖2.23 成分(Ti0.33Al0.67)0.99Si0.01N 和(Ti0.33Al0.67)0.91Si0.09N退火前後,使用奈米壓痕硬度表示圖 41
圖3.1 實驗流程圖 42
圖3.2陰極電弧沉積系統π-300示意圖 44
圖3.3 鍍膜設計示意圖 45
圖3.4管型爐系統示意圖 46
圖3.5明道大學場發射掃描式電子顯微鏡 48
圖3.6使用SEM儀器分析(a)SEI影像(b)BEI影像 48
圖3.7 X-ray建設性干涉示意圖 50
圖3.8明道大學貴重儀器中心X光繞射分析儀 50
圖 3.9 薄膜殘留應力(a) Tensile stress (b) Compressive stress 52
圖3.10 1991年VDI 3198規範壓痕的辨別圖 54
圖3.11中興大學奈米壓痕測試儀 55
圖 3.12 Berkovich探針 56
圖3.13中興大學化學分析電子能譜儀 58
圖3.14清華大學二次離子質譜儀 60
圖3.15明道大學TGA熱重分析儀 62
圖3.16義守大學穿透式電子顯微鏡 64
圖4.1 Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N與Cr0.40Ti0.22Al0.36Si0.02N薄膜之低掠角圖譜 67
圖4.2 Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N、Cr0.40Ti0.22Al0.36Si0.02N之XPS全能譜圖 70
圖4.3分別為使用場發射電子顯微鏡 (a) Cr0.36Al0.57Si0.07N (b) Cr0.36Ti0.19Al0.41Si0.04N (c) Cr0.40Ti0.22Al0.36Si0.02N 之SEI與BEI截面形貌圖 73
圖4.4 Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N、Cr0.40Ti0.22Al0.36Si0.02N之楊氏係數、奈米壓痕值 75
圖4.5 Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N、Cr0.40Ti0.22Al0.36Si0.02N薄膜荷重與位移曲線圖(P-h curve)之比較 75
圖4.6使用X 光粉末繞射分析儀之殘留應力分析 78
圖4.7 (a)Cr0.36Al0.57Si0.07N、(b)Cr0.36Ti0.19Al0.41Si0.04N、(c)Cr0.40Ti0.22Al0.36Si0.02N薄膜壓痕試驗後SEM圖 78
圖4.8 (a)Cr0.36Al0.57Si0.07N、(b)Cr0.36Ti0.19Al0.41Si0.04N、(c)Cr0.40Ti0.22Al0.36Si0.02N高溫氧化試驗後X光繞射圖 80
圖4.9 (a)Cr0.36Al0.57Si0.07N、(b)Cr0.36Ti0.19Al0.41Si0.04N、(c)Cr0.40Ti0.22Al0.36Si0.02N 高溫氧化EDS之成分圖 84
圖4.10 Cr0.36Al0.57Si0.07N熱處理700~1000℃後表面形貌圖 86
圖4.11 Cr0.36Ti0.19Al0.41Si0.04N熱處理700~1000℃後表面形貌圖 87
圖4.12 Cr0.40Ti0.22Al0.36Si0.02N熱處理700~1000℃後表面形貌圖 88
圖4.14 Cr0.36Al0.57Si0.07N熱處理700~1000℃後SEI、BEI截面形貌圖 90
圖4.15 Cr0.36Ti0.19Al0.41Si0.04N熱處理700~1000℃後SEI、BEI截面形貌圖 91
圖4.16 Cr0.40Ti0.22Al0.36Si0.02N熱處理700~1000℃後SEI、BEI截面形貌圖 92
圖4.17 Cr0.40Ti0.22Al0.36Si0.02N熱處理900℃後EDS之linscan分析 93
圖4-18 Cr0.40Ti0.22Al0.36Si0.02N薄膜TEM之明視野影像 95
圖4-19 Cr0.40Ti0.22Al0.36Si0.02N薄膜TEM之暗視野影像 95
圖4-20 Cr0.40Ti0.22Al0.36Si0.02N薄膜TEM之較高倍率明視野影像 96
圖4-21 Cr0.40Ti0.22Al0.36Si0.02N薄膜TEM之較高倍率明視野影像 96
圖4.22 (a)Cr0.36Al0.57Si0.07N、(b)Cr0.36Ti0.19Al0.41Si0.04N及(c)Cr0.40Ti0.22Al0.36Si0.02 薄膜900℃高溫氧化後XPS縱深成分分析圖 100
圖4.23 利用XPS 分析Cr0.40Ti0.22Al0.36Si0.02N薄膜900℃高溫氧化後Ti2p、Al2p與Cr2p光譜的改變 101
圖4.24 利用XPS 分析Cr0.36Al0.57Si0.07N薄膜900℃高溫氧化後Al2p與Cr2p光譜的改變 102
圖4.25所示Cr0.36Al0.57Si0.07N薄膜700~1000℃縱深成分分析圖 106
圖4.26 Cr0.36Ti0.19Al0.41Si0.04N薄膜700~1000℃縱深成分分析圖 108
圖4.27 Cr0.40Ti0.22Al0.36Si0.02N薄膜700~1000℃縱深成分分析圖 110
圖4.28 Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N、Cr0.40Ti0.22Al0.36Si0.02N薄膜高溫氧化後氧化層深度比較 111
圖4.29為Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N、 Cr0.40Ti0.22Al0.36Si0.02N、TiN、TiAlN、AlTiN薄膜在使用TGA升溫至1300℃ 112
圖4.30為Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N、Cr0.40Ti0.22Al0.36Si0.02N薄膜在使用TGA升溫至1300℃ 113
表目錄
表3.1 CrTiAlSiN 薄膜製程參數表 44
表3.2 CrTiAlSiN 薄膜高溫氧化製程參數表 46
表4.1 Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N與Cr0.40Ti0.22Al0.36Si0.02N薄膜在矽基材上之晶粒大小 67
表4.2利用XPS成分分析Cr0.36Al0.57Si0.07N、Cr0.36Ti0.19Al0.41Si0.04N與Cr0.40Ti0.22Al0.36Si0.02N薄膜之試片名稱與成分比例(at.%) 69
表4.5 使用EDS分析各元素變化 (a) Cr0.36Al0.57Si0.07N、(b)Cr0.36Ti0.19Al0.41Si0.04N、(c)Cr0.40Ti0.22Al0.36Si0.02N 81
[1] Reiter AE. Presented at ICMCTF, San Diego, 2004
[2] Endrino JL, Wachter A, Kuhnt E, Mettler T, Neuhaus J,Gey C.Presented at MRS Boston, 2004
[3] R. Hauert and J. Patscheider, Adv. Eng. Mater. 2 (2000)247
[4] J. Musil, Surf. Coat. Technol. 125 (2000) 322
[5] J. Patscheider, T. Zehnder, and M. Diserens, Surf. Coat.Technol. 146-147 (2001) 201
[6] M. Zhou, Y. Makino, Thin Solid Films, 339, (1999), 203
[7] Knotek, M. Bohmer et al., Materials Science & Engineering A, 105, (1988),481
[8] G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson,L.S. Shuster, M.S. Migranov, Surface & Coatings Technology, 200, (2006),5738
[9] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Surface & Coatings Technology, 201,(2006), 4329
[10] I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, Surface &Coatings Technology, 201, (2007), 5223
[11] P. Karvankova, A. Karimi, O. Coddet, T. Cselle, M. Morstein, MaterialsResearch Society, 890, (2006)
[12] S.M. Yang, Y.Y. Chang, D.Y. Wang, D.Y. Lin, W.T. Wu, Journal of Alloys and Compounds 440 (2007) 375–379
[13] Y.Y. Chang, D.Y. Wang, Surface & Coatings Technology 201 (2007) 6699–6701
[14] S.M. Yang, Y.Y. Chang, D.Y. Lin, D.Y. Wang, and W.T. Wu, Journal of Nanoscience and Nanotechnology Vol.8, 1–5, 2007
[15] S.M. Yang, Y.Y. Chang, D.Y. Lin, D.Y. Wang, W.T. Wu, Journal of Nanoscience and Nanotechnology Vol.8, 1–5, 2008
[16] Y.Y. Changa, C.P. Chang, D.Y. Wang, S.M. Yang , W.T. Wu , Journal of Alloys and Compounds 461 (2008) 336–341
[17] S.M. Yang , Y.Y. Chang , D.Y. Lin, D.Y. Wang , W.T Wu, Surface & Coatings Technology 202 (2008) 2176–2181
[18] Y.Y. Chang , C.P. Chang, Surface & Coatings Technology (2009)
[19] Y.Y. Chang, S.J. Yang , W.T. Wu , Y.C. Kuo , J.W. Lee , C.J. Wang, Thin Solid Films 517 (2009) 4934–4937
[20] 張啟邦,明道大學碩士論文,陰極電弧沉積AlTiN/CrN與CrAlSiN薄膜之微結構、機械性質與高溫氧化行為研究
[21] 楊勝閔,國立中興大學材料工程學系博士論文,陰極電弧沉積Ti-Si-N與Ti-Al-Si-N薄膜之顯微結構、機械性質與高溫氧化之研究
[22] 薄膜工程學,全華科技圖書(93.8)P1-7~1-8
[23] J. Robertson, Materials Science and Engineering, R37 (2002) 129
[24] S. Konosu , T. Nakaniwa , and O. Ivano , “Effect of Heat Treatment in Atmosphere on Mechanical Properties of Pure Titanium at Liquid Helium Temperature” , Scripta Materialia , Vol. 38 (12) , pp. 1789-1795 , 1998
[25] Andres Gary, Society of vacuum 20 (2000)
[26] T. Seshacharyulu et al. , “Hot Deformation Mechanisms in ELI Grade Ti-6Al-4V” , Scripta Materialia , Vol. 41(3) , pp.283-288 , 1999
[27] 張銀祐,國立中興大學材料工程學系博士論文 陰極電弧活化沈積含金屬類鑽碳膜之製程與特性研究 民92
[28] 國家實驗研究院儀器科技研究中心,「真空技術與應用」,2008
[29] 張秉書,以非平衡磁控濺鍍法製備TiN硬質薄膜之研究,國立臺灣師範大學工業教育研究所,(2003)
[30] Weiss , F. H. Froes , D. Eylon , and G. E. Welsch , “Modification of Alpha Morphology in Ti-6Al-4V by Thermomechnical Processing” , Metallurgical Transactions A , Vol. 17A , pp. 1935-1947, 1986
[31] T. Seshacharyulu , S. C. Medeiros , W. G. Frazier , and Y.V.R.K. Prasad , “Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: 33. ASM Handbook , Vol. 4 , “Heat Treating”, ASM International , 5th Edition , the Material Information Society , 1992
[32] 「薄膜科技與應用」,全華科技股份有限公司,2005
[33] 蘇青森,實用真空技術,2003
[34] 表面與薄膜處理技術,全華科技股份有限公司,2005
[35] J.A. Thornton, J. Vac. Sci. Technol, 11(4), p.666, 1974
[36] Kenneth Holmberg Allan Matthews, Coatings Tribology, 2, 1994
[37] Frank H. W. Loffler, Surface and Coating Technology, 68/69, p.729-740, 1994
[38] R.Messier, J.Vac.Sci.Technol. A2(2), p.500, 1984
[39] 金屬工業研究發展中心,模具處理手冊,高雄市,1998
[40] 姚舜暉,「Effect of PVD Ceramic Thin Films on Wear and Fatigue Performances」,國立成功大學,博士論文,1998
[41] 柯文賢,「腐蝕及其防制」,全華科技圖書股份有限公司,2003
[42] V. B. Vykhodets et al. , “Oxygen Diffusion in Alpha TitaniumⅢ. Nuclear Reaction Investigation of Solid Solution of the Ti-O System” ,the Physics of Metals and Metallography , Vol. 64(6) , pp.80-83 , 1987
[43] Y.V.R.K. Prasad et al. , “Modeling of Dynamic Material Behavior in Hot Deformation : Forging of Ti-6242” , Metallurgical Transactions A , Vol. 15A , pp.1883-1892 , 1984
[44] Y.V.R.K. Prasad , T. Seshacharyulu , S. C. Medeiros , and W. G. Frazier , “Effect of Prior β-Grain Size on the Hot Deformation Behavior of Ti-6Al-4V : Coarse vs Coarser” , Journal of Materials Engineering and Performance , Vol.9(2) , pp.153-160 , 2000
[45] H. Gegel , S. Nadiv , “Dynamic Effect on Flow and Fracture during Isothermal Forging of a Titanium Alloy” , Scripta Metallurgica , Vol. 14 , pp.241-247 , 1980
[46] Y.G. Zhou , W.D. Zeng , and H.Q. Yu , “An Investigation of High-Temperature Deformation Strengthening and Thoughening Mechanism of Titanium Alloy” , ACTA Metallurgica Sinica , Vol.11 (5) , pp.376-382 , 1998
[47] S.L.Semiatin , J.F. Thomas, Jr., and P. Dadras , “Processing-Microstructure Relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si” , Metallurgical Transactions A , Vol. 14A , pp. 2363-2374 , 1983
[48] S. L. Semiatin , V. Seetharaman , and I. Weiss , “The Thermomechanical Processing of Alpha/Beta Titanium Alloys” , Journal of Minerals,Metals & Material Society , Vol. 49 (6) , pp.33-39 , 1997
[49] P. Ari-Gur , S.L. Semiatin , “Evolution of Microstructure, Macrotexture during Hot Rolling of Ti-6Al-4V” , Materials Science & Engineering A , Vol. 257 , pp.118-127 , 1998
[50] H. Holleck and V. Schier, “Muliilayer PVD Coatings for Wear Protection”, Surf. Coat. Technol., 76-77, 328-336, 1995
[51] Patrick L. Martin , “Effects of Hot Working on the Microstructure of Ti-base Alloys” , Materials Science & Engineering A , Vol. 243 , pp.25-31 , 1998
[52] S.L.Semiatin et al. , “Cavitation and Failure during Hot Forging of Ti-6Al-4V” , Metallurgical and Materials Transactions A , Vol. 30A , pp.1411-1424 , 1999
[53] S.L.Semiatin et al. , “Cavitation during Hot Tension Test of Ti-6Al-4V” , Materials Science & Engineering A , Vol. 256 , pp.92-110 , 1998
[54] Joanne L. Murray , “Phase Diagram of Binary Titanium Alloys” , ASM International , p.212 , 1987
[55] 鄭欽維 , “Ti-6Al-4V 表面α-case 之生成研究” , 國立成功大學機械工程學系碩士論文, 2000
[56] A.A. Hegazy , “Surface Harding of the Titanium Alloy Ti-6Al-4V due to oxygen diffusion at high temperature” , Aluminum , Vol. 60(6) , pp.375-379, 1984
[57] S.L.Semiatin , G.D. Lahoti , “The Occurrence of Shear Bands in Nonisothermal, Hot Forging of Ti-6Al-2Sn-4Zr-2Mo-0.1Si” ,
Metallurgical Transactions A , Vol. 14A , pp.105-115 , 1983
[58] B.S. Kim , G.S. Kim , S.Y. Lee , B.Y. Lee Surface & Coatings Technology 202 (2008) 5526–5529
[59] D.B. Lee, T.D. Nguyen, S.K. Kim,
Surface & Coatings Technology 203 (2009) 1199–1204
[60] N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature of Metals,2nd ednCambridge University Press, England, 2006
[61] G. Simkovich, Oxid. Met. 44 (1995) 501
[62] P. Kofstad, Oxid. Met. 44 (1995) 3
[63] I. Barin, Thermochemical Data of Pure Substances, VCH,Weinhein, Germany
[64] S.K. Tien, C.H. Lin, Y.Z. Tsai, J.G. Duh, Surf. Coat. Technol. 202 (2007) 735
[65] Y.Y. Chang, C.P. Chang, D.Y. Wang, S.M. Yang, W. Wu, J. Alloys Compd. 461(2008) 336
[66] P. Kofstad, High Temperature Oxidation of Metals, JohnWiley & Sons, NY, 1966,p. 175.
[67] M.W. Brumm, H.J. Grabke, Corros. Sci. 33 (1992) 1677.
[68] P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, I. Milosev, Thin Solid Films 281/282(1996) 298.
[69] H. Ichimura, A. Kawana, J. Mater. Res. 9 (1994) 151.
[70] M. Diserens, J. Patscheider, F. Lévy, Surf. Coat. Technol. 120–121 (1999) 158
[71] D.B. Lee, Y.C. Lee, S.C. Kwon, Surf. Coat. Technol. 141 (2001) 227
[72] A. Flink , J.M. Andersson , B. Alling a,c, R. Daniel d, J. Sjölén , L. Karlsson , L. Hultman , Thin Solid Films (2008)
[73] 汪建民,材料分析,中國材料科學學會出版,(2004)
[74] 張銀祐,掃描式電子顯微鏡能量散佈光譜儀分技術操作訓練說明會,2007
[75] JEOL, JSM-7000F, Instructions, (2004)
[76] X光繞射原理與材料結構分析,中國材料科學學會,(2004)
[77] Heinke W, Leyland A, Matthews A, Berg G,Friedrich C, Broszeit E, Thin Solid Films, 270(1-2), p.431, 1995
[78] B.E.Warren, X-Ray Diffraction, (1969)
[79] B.D. Cullity and S. R. Stock, Elements of X-ray Diffraction (3rd edition),Prentice Hall(2001)
[80] 楊勝裕,AlN/VN及AlN/ZrN超晶格多層膜之合成與特性分析,國立東華大學材料科學與工程研究所,碩士論文
[81] C. Mendibide, P. Steyer, C. Esnouf, P. Goudeau, D. Thiaudiere, M. Gailhanou, J.Fontaine, Surface & Coatings Technology, 200, (2005), 165
[82] P. Villain, P.-O. Renault, P. Goudeau, K.F. Badawi, Thin Solid Films, 406,(2002), 185
[83] C.H. Ma, J.H. Huang, H. Chen, Thin Solid Films, 418, (2002), 73
[84] 李朝勝,單晶銅於奈米壓入之應變分析,中原大學碩士論文
[85] 二次離子質譜儀,凌永健,科儀新知 1989, 11(2), 36-48
[86] 離子束質譜術的原理與應用,凌永健,科儀新知 1990, 12(2), 20-37
[87] 二次離子質譜儀在微電子工業上的應用,張梁興、凌永健,電子發展月刊 1990, 149, 50-59
[88] TechMax Technical Co., Ltd., Nov. 2003
[89] W. Heinke, A. Leyland, A. Matthews, G. Bery, C. Friedrich, E. Broszeit, Thin Solid Films, 270, p.431-438, 1995
[90] Flink, T. Larsson ,J. Sjolen, L. Karlsson , L. Hultman “Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability” Surface & Coatings Technology, Vol. 200, pp.1535-1542, 2005
[91] S.H. Kim, J.K. Kim, K.H. Kim, ”Influence of deposition conditions on the microstructure and mechanical properties of Ti-Si-N fims by DC reactive magnetron sputtering”, Thin Solid Films, Vol.420-421,pp.360-365,2002
[92] H. Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, and N. Iwamoto, “The mechanical properties and microstructure of Ti–Si–N nanocomposite films by ion plating”, Surface and Coatings Technology, Vol. 169-170, pp. 452-455, 2003
[93] Park, J.H. Park, S.Y. Yoon, M.H. Lee, and K.H. Kim, “Tribological behavior of Ti–Si–N coating layers prepared by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, Vol. 179, pp. 83-88, 2004
[94] M.C. Kang, J.S. Kim, and K.H. Kim, “Cutting performance using high reliable device of Ti–Si–N-coated cutting tool for high-speed interrupted machining”, Surface and Coatings Technology, Vol. 200, pp. 1939-1944, 2005
[95] L.Hultman,J.E.Sundgren,and J. E. Greene, ”Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films”,Journal of Applied Physics, Vol. 66, pp. 475-1003,1989
[96] S. Zhang, Y. Fu, H. Du, X.T. Zeng, Y.C. Liu, Surf. Coat. Technol. 162, 42 (2002)
[97] S. Zhang, X. L. Bui, J. Jiang, X. Li, Surf. Coat. Technol. 198, 206 (2005)
[98] Z.J. Liu, P.W. Shum, Y.G. Shen, Thin Solid Films 468, 161 (2004)
[99] S.Y. Lee, B. Kim, S.D. Kim, G. Kim, Y.S. Hong, Thin Solid Films 506-507, 192 (2006)
[100] Y.Y. Chang, S.J. Yang, D.Y. Wang, Thin Solid Films 515, 4722 (2007)
[101] M. P. Wojtan, A. Karimi, T. Cselle, M. Morstein, Surf. Coat. Technol. 177-178, 376 (2004)
[102] D. Rafaja, A. Poklad, V. Klemm, G. Schreiber, D. Heger, M. Ším, M. Dopita, Thin Solid Films 514, 240 (2006)
[103] P. Karvankova, A. Karimi, O. Coddet, T. Cselle, M. Morstein, Mater. Res. Soc. Symp. Proc. 890, 18.1 (2006)
[104] 工業材料雜誌 181期 91年1月
[105] C.D.Wagner, W.M.Rlggs, L.E.Davis, J.F.Moulder, G.E. Muilenberg, X射線光電子分光儀應用手冊
[106] Taylor J.A, Appl. Surf. Sci. 1, 506 (1978)
[107] Palchan I., Crespin M., Estrade-Szwarckopf H., Rousseau B., Chem. Phys. Lett. 157, 321 (1989)
[108] Simon D., Perrin C., Bardolle J, J. Microsc. Spectrosc. Electron. 1, 175 (1976)
[109] Myers C.E., Franzen H.F., Anderegg J.W, Inorg. Chem. 24, 1822 (1985)
[110] Nefedov V.I., Salyn, Y.V., Chertkov A.A., Padurets L.N, Zh. Neorg. Khimii 19, 1443 (1974)
[111] Lebugle A., Axelsson U., Nyholm R., Martensson N, Phys. Scripta 23, 825 (1981)
[112] 姚寶順,反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究,國立成功大學材料科學及工程研究所博士論文,(2004)
[113] Flink, J.M. A (2008). J.M. Andersson, B. Alling, R. Daniel, J. Sjölén, L. Karlsson, L. Hultman, Thin Solid Films 515, 714-721 (2008)
[114] M. Wittmer, J. Noser, H. Melchior, J. Appl. Phys. 52 (1981) 6659
[115] Banakh, P.E. Schmid, R. Sanjines, F. Levy, Surf. Coat. Technol. 163 (2003) 57
[116] Milosev, H.H. Strehblow, B. Navingek, Surf. Coat. Technol. 74–75 (1995) 897
[117] F.M. Capece, V. Dicastro, C. Furlani, G. Mattogno, C. Fragale, M. Gargano, M. Rossi,J. Electron Spectrosc. Relat. Phenom. 27 (1982) 119
[118] D.R. Gaskell, Introduction to the Thermodynamics of Materials, 4th ed.Taylor and Francis Group, 2003
[119] H.C. Barshilia, B. Deepthi, K.S. Rajam, Vacuum 81 (2006) 479
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top