|
1. Rafael C. Gonzalez, and Richard E. Woods原著,繆紹綱編譯,數位影像處理,台灣培生教育出版社,2003。 2. Abdulkadir Sengur, Ibrahim Turkoglu, and M. Cevdet Ince, “Wavelet packet neural networks for texture classification”, Expert Systems with Applications, Vol. 12, 2007, pp. 527-533. 3. Amet, A. L., Ertuzun, A., and Ercil, A., “Texture defect detection using subband domain co-occurrence matrices”, Image Anal. Interpretation, Vol. 1, 1998, pp.205-210. 4. Arivazhagan, S. and Ganesan, L.,“Texture classification using wavelet transform”, Pattern Recognition Letters, Vol. 24, 2003, pp. 1513-1521. 5. Arivazhagan, S.,and Ganesan, L., “Texture segmentation using wavelet transform”, Pattern Recognition Letters, Vol. 24, 2003, pp. 3197-3203. 6. Bileschi, S. M., and Heisele, Bernd., “Advances in component-based face detection”, Pattern Recognition with Support Vector Machines : first international Workshop, 2002, pp. 135-143. 7. Boser, B. E., Guyon, I. M., and Vapnik, V., “A training algorithm for optimal margin classifiers”, In Fifth Annual Workshop on Computational Learning Theory, Pttsburgh, 1992. 8. Brodatz, P.,“Textures: A Photographic Album for Artists and Designers Dover”, New York, 1966. 9. Cao, L. J., and Tay, F. E. H., “Support vector machine with adaptive parameters in financial time series forecasting”, IEEE Transactions on Neural Network, Vol. 14, No. 6, 2003, pp. 1506-1518. 10. Chen, Xue-wen, Zeng Xiangyan, and Deborah van Alphen, “Multi-class feature selection for texture classification”, Pattern Recognition Letters, Vol. 27, 2006, pp.1685-1691. 11. David, A., and Lerner, L., “Pattern classification using a support vector machine for genetic disease diagnosis”, Electrical and Electronics Engineers in Israel, 23rd IEEE Convention of Prceedings, 2004, pp. 289-292. 12. Drimbarean, A., and Whelan, P. F., “Experiments in colour texture analysis”, Pattern Recognition Letters, Vol. 22, 2001, pp. 1161-1167. 13. Fletcher, R., “Practical methods of optimization”, John Wiley and Sons, Inc, 2nd edition, 1987. 14. Friedman, J., “Another approach to polychotomous classification”, Technical report, Department of Statistics, Stanford University, 1996. 15. Gunn, Steve R., “Support Vector Machines for Classification and Regression”University of Southampton, Technical Report, 1998. 16. Guyon.I, Matic.N, Vapnik.V.N, “Discovering Information Patterns and Data Cleaning”, Cambridge,MA:MIT Press,1996, pp. 181-203. 17. Haralick, Robert, M., “Statistical and Structural Approaches to Texture”, Proceedings of the IEEE, Vol. 67, Issue 5, 1979, pp. 786-804. 18. Haralick, Robert, M., Shanmugam, K., Dinstein, I., “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 3, Issue 6, 1973, pp. 610-621. 19. Hu, Guo-Sheng, Xie Jing, Zhu Feng-Feng, “Classification of power quality disturbances using wavelet and fuzzy support vector machines”, Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on Vol. 7, 2005, pp.3981-3984. 20. Huang, Yong, Chan Kap Luk, and Zhang Zhihua, “Texture classification by multi-model feature integration using Bayesian networks”, Pattern Recognition Letters , Vol. 24, 2003, pp. 393-401. 21. Lambert, G., and Bock, F., “Wavelet method for texture defect detection”, IEEE Int.Conf. Image Process, Santa Barbara, CA 3, 1997, pp. 201-204. 22. Li Shutao, and John Shawe-Taylor, “Comparison and fusion of multiresolution features for texture classification”, Pattern Recognition Letters, Vol. 26, 2005, pp.633-638. 23. Li Shutao, James T. Kwok, Zhu Hailong, and Wang Yaonan, “Texture classification using the support vector machines”, Pattern Recognition, Vol. 36, 2003, pp.2883 – 2893. 24. Lin Chun-Fu and Wang Sheng-De, “Fuzzy Support Vector Machines”, IEEE Transactions on Neural Networks, Vol. 13, No. 2, 2002, pp.464-471. 25. Lin Chun-Fu, Wang Sheng-De, “Training algorithms for fuzzy support vector machines with noisy data”, Pattern Recognition Letters, Vol. 25, 2004, pp.1647-1656. 26. Liu Yi-Hung, and Chen Yen-Ting, “Face Recognition Using Total Margin-Based Adaptive Fuzzy Support Vector Machines”, IEEE Transactions on Neural Networks, , Vol. 18, No. 1, 2007, pp. 178-192. 27. Lu Jiwen, Zhang Erhu, “Gait recognition for human identification based on ICA and FuzzySVM through multiple views fusion”, Pattern Recognition Letters, vol. 28, 2007, pp. 2401-2411. 28. Mao Yong, Zhou Xiaobo, Pi Daoying, Sun Youxian, and Stephen T. C. Wong, “Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection”, Journal of Biomedicine and Biotechnology, 2005(2), 2005, pp.160-171. 29. Naqa, I., Yongyi, Yang., Wernick, M. N.,Galatsanos, N. P., and Nishikawa, R. M.,“A support vector machine approach for detection of microcalcifications” ,IEEE Transactions on Medical Imaging, Vol.21, No. 12, 2002, pp. 1552-1563. 30. Nello, C. J., and Shave, T., “An introduction to Support Vector Machines and other kernel-based learning methods”, Cambridge university press, 2000. 31. Pichler, O., Teuner, A., and Hosticka B. J., “A comparison of texture feature extraction using adaptive Gabor ltering, pyramidal and tree structured wavelet transforms”,Pattern Recognition, Vol. 29, 1996, pp. 733-742. 32. Tsai Chih-Fong, “Image mining by spectral features: A case study of scenery image classification”, Expert Systems with Applications, Vol. 32, 2007, pp. 135-142. 33. Vapnik, V.,“Statistical Learning Theory”, Wiley, 1998. 34. Wang Tai-Yue, Chiang Huei-Min, “Fuzzy support vector machine for multi-classtext categorization”, Information Processing and Management, Vol. 43, 2007, pp. 914-929. 35. Wang Yongqiao, Wang Shouyang, and Lai K. K., “A new fuzzy support vector machine to evaluate credit risk ” , IEEE Transactions on Fuzzy Systems, Vol. 13, No. 6, 2005, pp. 820-831. 36. Yang Cheng-Hong, Jin Li-Cheng, Chuang Li-Yeh, “Fuzzy support vector machines for adaptive Morse code recognition”, Medical Engineering & Physics, Vol. 28, 2006, pp. 925-931 37. Zhang. X, “Using class-center vectors to build support vector machines”in Proc.IEEE NNSP’99,1999, pp.3-11.
|