( 您好!臺灣時間:2022/08/09 19:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Apply Fuzzy Support Vector Machine to Texture Classification
外文關鍵詞:Texture imagesGray-Level Co-occurrence MatrixSupport vector machinesFuzzy support vector machines
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
影像分類的相關技術通常會以影像的相關特徵值作為分析的重點,而其中紋理特徵值是最可以清楚描述出影像中的物體類別的特徵之一,所以以紋理特徵值做為分類之依據,將可明確的描述出影像所屬的類別。本研究主要探討關於紋理影像分類,首先利用灰階共生矩陣(Gray-Level Co-occurrence Matrix;GLCM)將紋理影像做轉換,之後擷取出二種統計特徵值及七種灰階共生矩陣特徵值,再將所擷取出的紋理特徵值利用支向機(Support vector machines;SVM)以及模糊支向機(Fuzzy Support vector machines;FSVM)進行影像分類之步驟,最後比較傳統支向機與模糊支向機的分類結果,根據所得之結果顯示,兩個分類器之間的分類正確率幾乎是相同的。

In recent years, to develop an automatic and user-friendly vision inspection system has been explored by a number of related researchers and groups, such as: industrial inspection, fingerprint identification, medical testing and remote sensing technology. There are image processing technologies and applications in the above fields. Images classification can be regarded as one technology that trains computer to identify and distinguish among images, understand human thinking and decision model. Its future application derived from it can bring the considerable convenience.
Image classification techniques are usually related to image analysis of the relevant characteristic values. Texture feature attribute is one of the clearest descriptions of the image of object categories. Therefore, texture feature attributes as a basis for classification will be a clear description of different type of texture image. This study focused on the on the texture image classification. First, author uses gray-level Co-occurrence matrix (GLCM) of texture images to transfer the original texture images. After capturing of two kinds of eigenvalue statistics and seven gray-level Co-occurrence matrix eigenvalue, then author classifies the texture features using support vector machines (SVM) and fuzzy support vector machines (FSVM) for image classification. Finally, comparison with traditional support vector machines and fuzzy support vector machines classification of the obtained results, it is showed that the results of two classifiers are almost the same.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究架構與流程 2
第二章 文獻探討 4
2.1 紋理分析 4
2.2 支向機 7
2.3 模糊支向機 8
第三章 研究方法 11
3.1 實驗流程 11
3.2 灰階共生矩陣(Gray-Level Co-occurrence Matrix;GLCM) 12
3.3 紋理特徵擷取(Features extraction) 15
3.4 支向機(Support Vector Machine;SVM)分類 17
3.4.1 線性可分支向機 17
3.4.2 線性不可分支向機 19
3.4.3 非線性可分支向機 20
3.5 模糊支向機(Fuzzy Support Vector Machine;FSVM)分類 21
3.5.1 不同的權重於兩個類別 22
3.5.2 Fuzzy membership的計算 23
3.5.3 Kernel函數 25
3.6 多類支向機 25
3.6.1 Holdout Method 26
3.6.2 Cross-Validation Method 26
3.6.3 One-against-all method 27
第四章 實驗結果與分析 28
4.1資料來源與格式 28
4.2影像前處理及特徵值擷取 29
4.3 支向機分類結果 30
4.4 模糊支向機分類結果 33
4.5 SVM與FSVM分類之結果比較 36
第五章 結論與後續建議 37
5.1 結論 37
5.2 後續建議 38
參考文獻 39
附錄A FSVMs SMO之pseudo-code 43
附錄B 訓練資料特徵值之數據 46

1. Rafael C. Gonzalez, and Richard E. Woods原著,繆紹綱編譯,數位影像處理,台灣培生教育出版社,2003。
2. Abdulkadir Sengur, Ibrahim Turkoglu, and M. Cevdet Ince, “Wavelet packet neural networks for texture classification”, Expert Systems with Applications, Vol. 12, 2007, pp. 527-533.
3. Amet, A. L., Ertuzun, A., and Ercil, A., “Texture defect detection using subband domain co-occurrence matrices”, Image Anal. Interpretation, Vol. 1, 1998, pp.205-210.
4. Arivazhagan, S. and Ganesan, L.,“Texture classification using wavelet transform”, Pattern Recognition Letters, Vol. 24, 2003, pp. 1513-1521.
5. Arivazhagan, S.,and Ganesan, L., “Texture segmentation using wavelet transform”, Pattern Recognition Letters, Vol. 24, 2003, pp. 3197-3203.
6. Bileschi, S. M., and Heisele, Bernd., “Advances in component-based face detection”, Pattern Recognition with Support Vector Machines : first international Workshop, 2002, pp. 135-143.
7. Boser, B. E., Guyon, I. M., and Vapnik, V., “A training algorithm for optimal margin classifiers”, In Fifth Annual Workshop on Computational Learning Theory, Pttsburgh, 1992.
8. Brodatz, P.,“Textures: A Photographic Album for Artists and Designers Dover”, New York, 1966.
9. Cao, L. J., and Tay, F. E. H., “Support vector machine with adaptive parameters in financial time series forecasting”, IEEE Transactions on Neural Network, Vol. 14, No. 6, 2003, pp. 1506-1518.
10. Chen, Xue-wen, Zeng Xiangyan, and Deborah van Alphen, “Multi-class feature selection for texture classification”, Pattern Recognition Letters, Vol. 27, 2006, pp.1685-1691.
11. David, A., and Lerner, L., “Pattern classification using a support vector machine for genetic disease diagnosis”, Electrical and Electronics Engineers in Israel, 23rd IEEE Convention of Prceedings, 2004, pp. 289-292.
12. Drimbarean, A., and Whelan, P. F., “Experiments in colour texture analysis”, Pattern Recognition Letters, Vol. 22, 2001, pp. 1161-1167.
13. Fletcher, R., “Practical methods of optimization”, John Wiley and Sons, Inc, 2nd edition, 1987.
14. Friedman, J., “Another approach to polychotomous classification”, Technical report, Department of Statistics, Stanford University, 1996.
15. Gunn, Steve R., “Support Vector Machines for Classification and Regression”University of Southampton, Technical Report, 1998.
16. Guyon.I, Matic.N, Vapnik.V.N, “Discovering Information Patterns and Data Cleaning”, Cambridge,MA:MIT Press,1996, pp. 181-203.
17. Haralick, Robert, M., “Statistical and Structural Approaches to Texture”, Proceedings of the IEEE, Vol. 67, Issue 5, 1979, pp. 786-804.
18. Haralick, Robert, M., Shanmugam, K., Dinstein, I., “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 3, Issue 6, 1973, pp. 610-621.
19. Hu, Guo-Sheng, Xie Jing, Zhu Feng-Feng, “Classification of power quality disturbances using wavelet and fuzzy support vector machines”, Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on Vol. 7, 2005, pp.3981-3984.
20. Huang, Yong, Chan Kap Luk, and Zhang Zhihua, “Texture classification by multi-model feature integration using Bayesian networks”, Pattern Recognition Letters , Vol. 24, 2003, pp. 393-401.
21. Lambert, G., and Bock, F., “Wavelet method for texture defect detection”, IEEE Int.Conf. Image Process, Santa Barbara, CA 3, 1997, pp. 201-204.
22. Li Shutao, and John Shawe-Taylor, “Comparison and fusion of multiresolution features for texture classification”, Pattern Recognition Letters, Vol. 26, 2005, pp.633-638.
23. Li Shutao, James T. Kwok, Zhu Hailong, and Wang Yaonan, “Texture classification using the support vector machines”, Pattern Recognition, Vol. 36, 2003, pp.2883 – 2893.
24. Lin Chun-Fu and Wang Sheng-De, “Fuzzy Support Vector Machines”, IEEE Transactions on Neural Networks, Vol. 13, No. 2, 2002, pp.464-471.
25. Lin Chun-Fu, Wang Sheng-De, “Training algorithms for fuzzy support vector machines with noisy data”, Pattern Recognition Letters, Vol. 25, 2004, pp.1647-1656.
26. Liu Yi-Hung, and Chen Yen-Ting, “Face Recognition Using Total Margin-Based Adaptive Fuzzy Support Vector Machines”, IEEE Transactions on Neural Networks, , Vol. 18, No. 1, 2007, pp. 178-192.
27. Lu Jiwen, Zhang Erhu, “Gait recognition for human identification based on ICA and FuzzySVM through multiple views fusion”, Pattern Recognition Letters, vol. 28, 2007, pp. 2401-2411.
28. Mao Yong, Zhou Xiaobo, Pi Daoying, Sun Youxian, and Stephen T. C. Wong, “Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection”, Journal of Biomedicine and Biotechnology, 2005(2), 2005, pp.160-171.
29. Naqa, I., Yongyi, Yang., Wernick, M. N.,Galatsanos, N. P., and Nishikawa, R. M.,“A support vector machine approach for detection of microcalcifications” ,IEEE Transactions on Medical Imaging, Vol.21, No. 12, 2002, pp. 1552-1563.
30. Nello, C. J., and Shave, T., “An introduction to Support Vector Machines and other kernel-based learning methods”, Cambridge university press, 2000.
31. Pichler, O., Teuner, A., and Hosticka B. J., “A comparison of texture feature extraction using adaptive Gabor ltering, pyramidal and tree structured wavelet transforms”,Pattern Recognition, Vol. 29, 1996, pp. 733-742.
32. Tsai Chih-Fong, “Image mining by spectral features: A case study of scenery image classification”, Expert Systems with Applications, Vol. 32, 2007, pp. 135-142.
33. Vapnik, V.,“Statistical Learning Theory”, Wiley, 1998.
34. Wang Tai-Yue, Chiang Huei-Min, “Fuzzy support vector machine for multi-classtext categorization”, Information Processing and Management, Vol. 43, 2007, pp. 914-929.
35. Wang Yongqiao, Wang Shouyang, and Lai K. K., “A new fuzzy support vector machine to evaluate credit risk ” , IEEE Transactions on Fuzzy Systems, Vol. 13, No. 6, 2005, pp. 820-831.
36. Yang Cheng-Hong, Jin Li-Cheng, Chuang Li-Yeh, “Fuzzy support vector machines for adaptive Morse code recognition”, Medical Engineering & Physics, Vol. 28, 2006, pp. 925-931
37. Zhang. X, “Using class-center vectors to build support vector machines”in Proc.IEEE NNSP’99,1999, pp.3-11.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top