(3.236.118.225) 您好!臺灣時間:2021/05/17 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉碩惠
研究生(外文):Shuo-Hui Liu
論文名稱:固定化酵素的微環境對催化單一光學活性分子合成能力之影響
論文名稱(外文):The influence of microenvironment to the catalytic ability of immobilized lipase in the synthesis of an optically active compound
指導教授:李靜宜李靜宜引用關係
指導教授(外文):Ching-Yi Lee
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:126
中文關鍵詞:固定化脂肪酶轉酯化活性假單胞桿菌屬脂肪酶巨孔材料有機二氧化矽
外文關鍵詞:Lipase ImmobileizationTransesterification ActiveityPseudomonas Cepacia LipaseMacroporous MatricesOrganosilica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
由於脂肪酶是一種在油水界面進行催化的酵素,微環境的疏水性可能影響其催化能力。為了了解這個影響性,本研究利用一次合成法製備出一系列的巨孔有機二氧化矽,包括帶有乙基、辛基、十二烷基、苯基及甲基丙烯醯基等官能基,探討其性質,並用於吸附脂肪酶。由水的接觸角分析顯示,這些有機二氧化矽的疏水程度依序為十二烷基衍生二氧化矽>辛基衍生二氧化矽>苯基衍生二氧化矽>乙基衍生二氧化矽>甲基丙烯醯氧丙基衍生二氧化矽。由Pseudomonas cepacia脂肪酶在這些巨孔有機二氧化矽擔體上的固定量顯示酵素以在乙基衍生二氧化矽上的吸附量最多,在辛基衍生二氧化矽的吸附量最少。固定化脂肪酶的催化能力評估則是藉由橄欖油的水解反應以及(R,S)-1-苯乙醇與醋酸乙烯酯的鏡像選擇性轉酯化反應進行。酵素催化橄欖油水解反應與轉酯化反應的比活性以固定在十二烷基衍生二氧化矽的脂肪酶最高,但固定在純二氧化矽擔體的脂肪酶在轉酯化反應中表現出最佳的鏡像選擇性,顯示Pseudomonas cepacia脂肪酶在高疏水性環境中的反應活性較高,但在低疏水性環境中的鏡像選擇性較佳。固定在苯基衍生二氧化矽的脂肪酶有較佳的操作穩定性,在連續6次,每次反應3小時後,還保有96%的初始反應活性。
Because lipase catalyses reaction at water-oil interface, the hydrophobicity of the microenvironment surrounding enzyme may affect the catalytic capability of lipase. To investigate the influence of microenvironment, a series of macroporous organosilicas containing various organic groups, including ethyl, octyl, dodecyl, phenyl, and methacryloyloxy groups, were prepared, characterized, and applied to the immobilization of Pseudomonas cepacia lipase. Based on the contact angle data of water on these materials, the hydrophobicity followed the order of dodecyl-silica > octyl-silica > phenyl-silica > ethyl-silica > methacryloyloxy-silica. The loading of Pseudomonas cepacia lipase on these materials indicated that ethyl-silica had the highest capacity and octyl-silica had the lowest capacity. The catalytic ability of immobilized lipase was evaluated by the hydrolysis of olive oil and transesterification between (R,S)-1-phenylethanol and vinyl acetate. Lipase immobilized on dodecyl-silica showed highest activity in hydrolysis and transesterification. However, the lipase immobilized on pure silica showed a better enantioselectivity in transesterification. This result revealed that Pseudomonas cepacia lipase had a higher reaction activity in a more hydrophobic environment while it had a better enantioselectivity in a less hydrophobic environment. The lipase immobilized on phenyl-silica exhibited a better stability, as it retained 96% of its initial activity after 6 repeats of a three-hour reaction.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 酵素 3
2.1.1 脂肪酶 5
2.1.1.1 Pseudomonas sp.脂肪酶 9
2.1.1.1.1 Pesudomonas cepacia脂肪酶 9
2.1.2 酵素於有機溶劑中之反應 10
2.2 固定化酵素技術 13
2.2.1 固定化方法 14
2.2.2 影響固定化酵素性能的因素 20
2.3 多孔性固定化擔體 22
2.3.1 巨孔材料 24
2.3.2 三維整齊排列巨孔材料合成 25
2.3.2.1 膠體晶體模板法 26
2.3.2.1.1 巨孔無機氧化物的製備 27
2.3.2.2 生物模板法 32
2.3.2.3 其他模板法 33
2.4 有機-無機巨孔材料 33
2.4.1 表面接枝改質法 33
2.4.2 一次合成法 34
2.5 聚苯乙烯模板合成技術 36
2.5.1 乳化聚合反與無乳化劑乳化聚合反應 38
2.5.2 無乳化劑乳化聚合反應機構 39
2.5.3 乳化聚合法與無乳化劑乳化聚合法之比較 41
2.6 鏡像異構物 42
2.6.1 鏡像異構物的光學分割 44
2.6.2 固定化酵素催化1-苯乙醇的轉酯化反應 46
第三章 實驗方法 50
3.1 實驗藥品 50
3.2 實驗設備 52
3.3 實驗步驟 54
3.3.1 固定化擔體的製備 54
3.3.1.1 無機二氧化矽擔體的製備 54
3.3.1.2 有機二氧化矽擔體的製備 58
3.3.1.3 無機與有機二氧化矽薄膜製備 59
3.3.2 固定化脂肪酶的製備 59
3.3.2.1 以吸附法固定脂肪酶 59
3.3.3 利用固定化脂肪酶催化醋酸苯乙酯的合成 60
3.3.3.1 單一光學活性醋酸苯乙酯的製備 60
3.4 分析方法 61
3.4.1 聚苯乙烯分析 61
3.4.1.1 聚苯乙烯粒徑分析 61
3.4.1.2 聚苯乙烯熱重分析 61
3.4.2 巨孔有機二氧化矽擔體表面分析 62
3.4.2.1 氮氣吸/脫附法 62
3.4.2.2 場發射掃瞄式電子顯微鏡觀察 62
3.4.2.3 傅利葉紅外線光譜分析 63
3.4.2.4 有機二氧化矽與水的接觸角分析 63
3.4.3 蛋白質定量分析 65
3.4.4 固定化酵素水解活性檢測 65
3.4.5 1-苯乙醇與醋酸-1-苯乙酯鏡像異構物的分析 66
第四章 結果與討論 70
4.1 固定化擔體的合成 70
4.1.1 聚苯乙烯模板合成 70
4.1.2 二氧化矽擔體合成 76
4.1.3 有機二氧化矽擔體之疏水特性分析 91
4.2 固定化脂肪酶 93
4.2.1 脂肪酶在多孔二氧化矽及有機二氧化矽的吸附 93
4.2.2 不同擔體對固定化脂肪酶水解活性之影響 95
4.3 單一光學活性合成 96
4.3.1 1-苯乙醇與乙酸乙烯酯的不對稱轉酯化反應 96
4.3.2 有機溶劑對單一光學活性合成探討 99
4.3.3 固定化酵素穩定性探討 104
4.3.4 固定化酵素熱穩定性探討 106
第五章 結論 108
第六章 未來展望 109
參考文獻 110
附錄 118
A. 動態光散射粒徑分析 118
B. 氣體等溫吸脫附曲線 120
作者簡介 126

[1] A. M. Klibanov, “Enzymatic catalysis in anhydrous organic solvents”, TIBS., 14, 1989, 141-144.
[2] M. T. Reetz, A. Zonta, and J. Simpelkamp, “Efficient heterogeneous biocatalysts by entrapment of lipase in hydrophobic sol-gel materials”, Angew. Chem. Int. Ed. Engl., 34, 1995, 301-303.
[3] A. E. Ivanov, and M. P. Schneider, “Methods for the immobilization of lipases and their use for ester synthesis”, J. Mol. Catal. B, 3, 1997, 303-309.
[4] C. Wandrey, A. Liese, and D. Kihumbu, “Industrial biocatalysis: past, present, and future”, Org. Proc. Res. & Develop., 4, 2000, 286-290.
[5] R. Azerad, “Application of biocatalysts in organic synthesis”, Bull. Soc. Chim. Fr., 132(1), 1995, 17-51.
[6] 何國慶、丁立孝,“食品酵素學”,五南圖書出版股份有限公司,2007。
[7] H. L. Holland, “Microbial transformations”, Curr. Opin. Chem. Biol., 2, 1998, 77-84.
[8] T. Tanaka, E. Ono, M. Ishihara, S. Yamanaka, and K. Takinami, “Enzymatic acyl exchange of triglyceride in n-hexane”, Agri. Biol. Chem., 45, 1981, 2387-2389.
[9] A. R. Macrae, “Lipase-catalyzed interesterification of oils and fats”, J. Am. Oil Chem. Soc., 60, 1983, 291-294.
[10] J. L. del Rio, and I. Faus, “Resolution of (±)-trans-2-phenylcyclohexan-1-ol by lipases from Candida rugosa: effect of catalyst source and reaction conditions”, Biotechnol. Lett., 20, 1998, 1021-1025.
[11] N. N. Gandhi, “Applications of lipase”, J. Am. Oil Chem. Soc., 74, 1997, 621-634.
[12] R. D. Schmid, and R. Verger, “Lipases: interfacial enzymes with attractive applications”, Angew. Chem. Int. Ed., 37, 1998, 1608-1633.
[13] P. Berglund, “Controlling lipase enantioselectivity for organic synthesis”, Biomol. Eng., 18, 2001, 13-22.
[14] 陳國誠,“生物固定化技術與產業應用”,茂昌圖書有限公司,2000。
[15] K. Faber, “Biotransformations in organic chemistry: a textbook”, 5th edition, Springer, 2004.
[16] R. Sharma, Y. Chisti, U. C. Banerjee, “Production, purification, characterization and applications of lipases”, Biotechnol. Adv., 19, 2001, 627-662.
[17] M. T. Reetz, “Lipases as practical biocatalysts”, Curr. Opin. Chem. Biol., 6, 2002, 145-150.
[18] M.-P. Bousquet, R.-M. Willemot, P. Monsan, E. Boures, “Enzymatic synthesis of unsaturated fatty acid glucoside esters for dermo-cosmetic applications”, Biotechnol. Bioeng., 63, 1999, 730-736.
[19] S. R. Ghorpade, R. K. Kharul, R. R. Joshi, U. R. Kalkote, and T. Ravindranthan, “Desymmetrization of meso-cyclopenten-cis-1,4-diol to 4-(R)-hydroxycyclopent-2-en-1-(S)-acetate by irreversible transesterification using Chirazyme®”, Tetrahedron: Asymmetry, 10, 1999, 891-899.
[20] M. Kamori, Y. Yamashita, and Y. Naoshima, “Enzyme immobilization utilizing a porous ceramics support for Chiral Synthesis”, Chirality, 14, 2002, 558-561.
[21] 翁豪謙,“利用共價鍵結法在整齊排列中孔徑矽酸鹽擔體上固定化脂肪分解酵素”,私立明新科技大學,碩士論文,2005。
[22] http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/enzymes/GetPage.pl
[23] S. Zheng, “Effect of pore curvature and surface chemistry of model silica hosts on biocatalytic activity of immobilized lipase PS”, B. S., Zhejiang University, China, 2003.
[24] J. D. Schrag, Y. Li, M. Cygler, D. Lang, T. Burgdorf, H.-J. Hecht, R. Schmid, D. Schomburg, T. J Rydel, J. D Oliver, L. C Strickland, C M. Dunaway, S. B Larson, J. Day, and A. McPherson, “The open conformation of a Pseudomonas lipase”, Structure, 5, 1997, 187-202.
[25] F. R. Dastoli, S. Price, “Catalysis by xanthine oxidase suspended in organic media”, Arch. Biochem. Biophys., 118, 1967, 163-165.
[26] A. M. Klibanov, “Enzyme that work in organic solvent”, Chemtech., 16, 1986, 354-359.
[27] A. M. Klibanov, “Why are enzymes less active in organic solvents than in water?”, Trends Biotechnol., 15, 1997, 97-101.
[28] C. Laane, S. Boeren, K. Vos, C. Veeger, “Rules for optimization of biocatalystis in organic solvents”, Biotechnol. Bioeng., 30, 1987, 81-87.
[29] J. M. Nelson, E. G. Griffin, “Adsorption of invertase”, J. Am. Chem. Soc., 38, 1916, 1109-1115.
[30] N. Grubhofer, and L. Schleith, “Modified ion exchanger as specific adsorbents”, Naturwissenschaften, 40, 1953, 508-512.
[31] P. Bernfeld, J. Wan., “Antigens and enzyme made insoluble by entrapping them into lattices of synthetic polymers”, Science, 142, 1963, 678-679.
[32] T. M. S. Chang., “Congressional control of the executive branch”, Science, 146, 1964, 524-525.
[33] G. Pencreac’h, J. C. Baratti, “Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support”, Appl. Microbiol. Biotechnol., 47, 1997, 630-635.
[34] R. Rai, and V. Taneja, “Production of D-amino acids using immobilized D-hydantoinase from lentil, Lensesculenta, seeds”, Appl. Microbiol. Biotechnol., 50, 1998, 658-662.
[35] 黃世佑、蔡少偉、黃玲惠、向明、朱勝忠、張金全、蔣丙煌、林藹寧,“生物技術方法. 卷五, 生物化學工程”,國立台灣大學生物技術研究中心,2002。
[36] 林建中,“高分子材料性質與應用”,高立圖書有限公司,2002。
[37] P. Hara, U. Hanefeld, L. T. Kanerva, “Sol-gels and cross-linked aggregates of lipase PS from Burkholderia cepacia and their application in dry organic solvents”, J. Mol. Catal. B, 50, 2-4, 2008, 80-86.
[38] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, 359, 1992, 710-712.
[39] O. D. Velev, T. A. Jede, R. F. Lobo, A. M. Lenhoff, “Porous silica via colloidal crystallization”, Nature, 389, 1997, 447-448.
[40] D. Zhao, P. Yang, B. F. Chmelka, and G. D. Stucky, “Multiphase assembly of mesoporous-macroporous membranes”, Chem. Mater., 11, 1999, 1174-1178.
[41] C. Wang, C. Yang, Y. Song, W. Gao, and X. Xia, “Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film”, Adv. Func. Mater., 15, 2005, 1267-1275.
[42] U. A. E1-Nafaty, R. Mann, “Support-pore architecture optimization in FCC catalyst particles using designed pore networks”, Chem. Eng. Sci., 54, 1999, 3475-3484.
[43] A. Stein, R. C. Schroden, “Colloidal crystal templateng of three-dimensionally ordered macroporous solids: materials for photonics and beyond”, Curr. Opin. Solid Mater. Sci., 5, 2001, 553-564.
[44] 林旭彬,趙玉周,李靜,胡巧燕,江紹基,蔡志崗,李寶軍,“反蛋白石結構光子晶體製備技術”,人工晶體學報,33(6),2004,1022-1030。
[45] S. Kuai, S. Badilescu, G. Bader, R. Bruning, X. Hu, and V.-V. Truong, “Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating”, Adv. Mater., 15, 2003, 73-75.
[46] B. T. Holland, C. F. Blanford, A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids”, Science, 281, 1998, 538-540.
[47] O. D. Velev, A. M. Lenhoff, “Colloidal crystals as templates for porous materials”, Curr. Opin. Col. Int. Sci., 5, 2000, 56-63.
[48] S. A. Johnson, P. J. Ollivier, T. E. Mallouk, “Ordered mesoporous polymers of tunable pore size form colloidal silica templates”, Science, 283, 1999, 963-965.
[49] B. T. Holland, C. F. Blanford, T. Do, and A. Stein, “Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites”, Chem. Mater., 11, 1999, 795-805.
[50] M. Sadakane, T. Asanuma, J. Kubo, and W. Ueda, “Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method”, Chem. Mater., 17, 2005, 3546-3551.
[51] S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure”, J. Am. Chem. Soc., 126, 2004, 8314-8319.
[52] P. N. Pusey, and W. V. Megen, “Phase behaveiour of concentrated suspensions of nearly hard colloidal spheres”, Nature, 320, 1986, 340-342.
[53] N. P. Johnson, D. W. McComb, A. Richel, B. M. Treble, R. M. De La Rue, “Synthesis and optical properties of opal and inverse opal photonic crystals”, Synthetic Metals, 116, 2001, 469-473.
[54] H. Miguez. S. M. Yang, N. Tetreault, and G. A. Ozin, “Oriented free-standing three-dimensional silicon inverted colloidal photonic crystal microfibers”, Adv. Mater., 14, 2002, 1805-1808.
[55] Z.-Z. Gu, A. Fujishima, and O. Sato, “Fabrication of high-quality opal films with controllable thickness”, Chem. Mater., 14, 2002, 760-765.
[56] A. S. Dimitrov, and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces”, Langmuir, 12, 1996, 1303-1311.
[57] J. E. G. J. Wijnhoven, and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania”, Science, 281, 1998, 802-804.
[58] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths”, Science, 282, 1998, 897-901.
[59] 容建華,楊振忠,“聚合物有序凝膠模板製備三維有序二氧化鈦材料”,科學通報,47(18),2002,1385-1389。
[60] P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, “Preparation of macroporous metal films from colloidal crystals”, J. Am. Chem. Soc., 121, 1999, 7957-7958.
[61] O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, “A class of porous metallic nanostructures”, Nature, 401, 1999, 548.
[62] Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots”, Adv. Mater., 11, 1999, 165-169.
[63] A. Stein, “Sphere templateng methods for periodic porous solids”, Microporous and Mesoporous Materials, 44-45, 2001, 227-239.
[64] R. Roy, “Gel route to homogeneous glass preparation”, J. Am. Ceram. Soc., 52, 1969, 344.
[65] G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, “Ordered macroporous materials by colloidal assmbly: A possible route to photonic bandgap materials”, Adv. Mater., 11, 1999, 1261-1265.
[66] O. D. Velev, and E. W. Kaler, “Structured porous materials via colloidal crystal templating: from inorganic oxides to metals”, Adv. Mater., 12, 2000, 531-534.
[67] P. V. Braun, P. Wiltzius, “Electrochemically grown photonic crystals”, Nature, 402, 1999, 603-604.
[68] E. Chomski, O. Dag, A. Kuperman, N. Coombs, and G. A. Ozin, “New forms of luminescent silicon: silicon-silica composite mesostructures”, Chem. Vap. Deposition, 2, 1996, 8-13.
[69] S. A. Davis, H. M. Patel,E. L. Mayes, N. H. Mendelson, G. Franco, and S. Mann, “Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials”, Chem. Mater., 10, 1998, 2516-2524.
[70] S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, “Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases”, Nature, 385, 1997, 420-423.
[71] R. A. Caruso, and J. H. Schattka, “Cellulose acetate templates for porous inorganic network fabrication”, Adv. Mater., 12, 2000, 1921-1923.
[72] A. Stein, B. J. Melde, and R. C. Schroden, “Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age”, Adv. Mater., 12, 2000, 1403-1419.
[73] F. Babonneau, L. Leite, and S. Fontlupt, “Structural characterizeation of organically-modified porous silicates synthesizes using CTA+ surfactant and acidic conditions”, J. Mater. Chem., 9, 1999, 175-178.
[74] L. Mercier, and T. J. Pinnavaia, “Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route structure-function control by stoichiometric incorporation of organosiloxane molecules”, Chem. Mater., 12, 2000, 188-196.
[75] M. T. Reetz, A. Zonta, and J. Simpelkamp, “Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials”, Biotechnol. Bioeng., 49, 1996, 527-534.
[76] 陳建亨,“利用巨孔有機二氧化矽載體固定脂肪分解酵素之研究”,私立明新科技大學,碩士論文,2007。
[77] 杜逸虹,“聚合體學”,三民書局股份有限公司,2002。
[78] T. Matsumoto, A. Ochi, Kobunshi Kagaku, 22, 1965, 481-485.
[79] 歐進祿,“均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子”,國立中央大學,博士論文,2001。
[80] 張文斌,“利用具有三維整齊排列巨孔結構二氧化矽擔體固定脂肪分解酵素”,私立明新科技大學,碩士論文,2006。
[81] D. B. Calne, M. Sandler, “L-Dopa and parkinsonism”, Nature, 226, 1970, 21-24.
[82] S. C. Stinson, “Drug firms continue to develop chiral drugs as single enantiomers, to carry out racemic switches, and to use chirality to manage drug life cycles”, Chem. Eng. News, 79, 2001, 79-97.
[83] A. Ghanem, and H. Y. Aboul-Enein, “Application of lipases in kinetic resolution of racemates”, Chirality, 17, 2005, 1-15.
[84] R. A. Sheldon, “Chirotechnology: Designing economic chiral syntheses”, J. Chem. Tech. Biotechnol., 67, 1996, 1-14.
[85] P. Xue, X. H. Yan, and Z. Wang, “Lipase immobilized on HOOC-MCF: a highly enantioselective catalyst for transesterification resolution of (R,S)-1-phenylethanol”, Chinese Chem. Lett., 18, 2007, 929-932.
[86] M. S.-D. Juang and I. M. Krieger, “Emulsifier-free emulsion polymerization with ionic commonomer”, J. Polym. Sci., Polym. Chem. Ed., 14, 1976, 2089-2107.
[87] C.-S. Chen, Y. Fujimoto, G. Girdaukas and C. J. Sih, “Quantitative analyses of biochemical kinetic resolutions of enantiomers”, J. Am. Chem. Soc., 104, 1982, 7294-7299.
[88] “Zetasizer Nano s90 Manual”, Malvern Instruments, 2003.
[89] C. N. Satterfield, “Heterogeneous catalysis in Industrial practice”, McGraw-Hill, New York, 1991.
[90] 游純青,“介孔矽質MCM-48之光學研究”,中原大學,碩士論文,2003。
[91] “Nova 4200 operation manual”, Quantachrome, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top