1. 王木俊、劉傳璽,薄膜電晶體液晶顯示器:原理與實務,新文京開發出版社,民國97年。
2. 顧鴻壽,光電液晶平面顯示器技術基礎及應用,新文京開發出版社,民國93年。
3. 陳志強,LTPS低溫複晶矽顯示器技術,全華科技,民國93年。
4. 田民波,平面顯示器之技術發展,五南出版社,民國97年。
5. 劉傳璽、陳進來,半導體元件物理與製程-理論與實務,五南圖書出版社,民國95年。
6. Hong Xiao原著;羅正忠、張鼎張譯,半導體製程技術導論,台灣培生教育出版,民國91年。
7. Ben G. Streeetman, Sanjay Banerjee原著;吳孟奇等譯,東華書局,民國90年。
8. L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett., Vol. 20, 1999, pp. 614-617.
9. A. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev., Vol. 102, 1956, pp. 369-376.
10. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Device and Materials Reliability, Vol. 5, 2005, pp.5-19.
11. V. Martin Agostinelli, Greg M. Yeric, and Al F. Tasch, “Universal MOSFET hole mobility degradation models for circuit simulation,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 12, 1999, pp. 439-445.
12. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universal mobility of inversion layer mobility in Si MOSFETs: Part II—Effect of surface orientation,” IEEE Trans. Electron Devices, Vol. 41, 1994, pp. 2363-2368.
13. B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. on Electron Devices, Vol. 27, 1980, pp. 606-608.
14. D. M. Fleetwood and N. S. Saks, “Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides,” J. Appl. Phys., Vol. 79, 1996, pp. 1583-1594.
15. J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. F. Cavrois, “Radiation Effects in MOS Oxides,” IEEE Trans. on Nuclear Science, Vol. 55, 2008, pp. 833-853.
16. T. J. Russell, C. L. Wilson, and M. Gaitan, “Determination of the spatial variation of interface trapped charge using short-channel MOSFET's,” IEEE Trans. Electron Devices, Vol. 30, 1983, pp. 1662-1671.
17. S. C. Witczak, K. F. Galloway, R. D. Schrimpf, J. L. Titus, J. R. Brews and G. Prevost, “The determination of Si-SiO2 interface trap density in irradiated four-terminal VDMOSFETs using charge pumping,” IEEE Trans. on Nuclear Science, Vol. 43, 1996, pp.2558-2564.
18. S. Masui, T. Nakajima, K. Kawamura, T. Yano, I. Hamaguchi, K. Kajiyama, and M. Tachimori, “Evaluation of fixed oxide charge and oxide-silicon interface trap densities in low-dose and high-dose SIMOX wafers,” IEEE International SOI Conference, 1994, pp. 83-84.
19. F. T. Brady, S. S. Li, and D. E. Burk, “Determination of the fixed oxide charge and interface trap densities for buried oxide layers formed by oxygen implantation,” Appl. Phys. Lett., Vol. 52, 1988, pp. 886-888.
20. N. S. Saks and D. B. Brown, “Observation of H+ motion during interface trap formation, “ IEEE Trans. on Nuclear Science, Vol. 37, 1990, pp. 1624-1631.
21. A. Goetzberger, E. Klausmann and M. J. Schulz, “Interface states on semiconductor/insulator interface,” Solid State Science, 1976, pp. 1-43.
22. G. Declerck, “Characterization of surface states at the Si-SiO2 interface,” in Nondestructive Evaluation of Semiconductor Materials and Devices (J. N. Zemel, ed) Plenum Press, New York, 1979, pp. 105-148.
23. W. C. Johnson, “Mechanisms of Charge Buildup in MOS Insulators,” IEEE Trans. on Nuclear Science, Vol. 22, 1975, pp. 2144-2150.
24. N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices,” IEEE Trans. Electron Devices, Vol. 46, 1999, pp. 1464-1471.
25. K. N. Yang, H. T. Huang, M. C. Chang, C. M. Chu, Y. S. Chen, M. J. Chen, Y. M. Lin, M. C. Yu, S. M. Jang, C. H. Yu, and M. S. Liang, “A physical model for hole direct tunneling current in p+ poly-gate pMOSFETs with ultrathin gate oxides, “ IEEE Trans. Electron Devices, Vol. 47, 2000, pp. 2161-2166.
26. G. Chakraborty, S. Chattopadhyay, C. K. Sarkar, and C. Pramanik, “Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures” J. Appl. Phys.,Vol. 101, 2007.
27. Y. Tang, J. Chen, C. Chang, D. Liu, S. Haddad, Y. Sun, A. Wang, M. Ramskey, M. Kwong, H. Kinoshita, W. H. Chan, and J. Lien, “Different dependence of band-to-band and Fowler-Nordheim tunneling on source doping concentration of an n-MOSFET,” IEEE Electron Device Lett., Vol. 17, 1996, pp. 525-527.
28. R. Jhaveri, V. Nagavarapu, and J. C. Woo, “Asymmetric Schottky Tunneling Source SOI MOSFET Design for Mixed-Mode Applications,” IEEE Trans. Electron Devices, Vol. 56, 2009, pp. 93-99.
29. R. A. Vega, “Comparison study of tunneling models for Schottky field effect transistors and the effect of Schottky barrier lowering,” IEEE Trans. Electron Devices, Vol. 53, 2006, pp. 1593-1600.
30. J. Furlan, Z. Gorup, A. Levstek, and S. Amon, “Thermally assisted tunneling and the Poole–Frenkel effect in homogenous a-Si,” J. Appl. Phys., Vol. 94, 2003, pp. 7604-7610.
31. R. Ajjel, M. A. Zaidi , S. Alaya, G. Bremond, G. Guillot, J. C. Bourgoin, “Poole-Frenkel effect assisted emission from deep donor level in chromium doped GaP,” Appl. Phys. Lett., Vol. 72, 1998, pp. 302-304.
32. S. C. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, Willander M., “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys., Vol. 89, 2001, pp. 3804-3810.
33. M. Shintaro, Y. Motoji, T. Nobuaki, S. Kazuhiko, S. Keiichi, M. Yoshiteru, K. Kunio, T. Akira, O. Kenji, “Huge magnetoresistive effects using space charge limited current in ZnO/SiO2 system,” Appl. Phys. Lett., Vol. 91, 2007.
34. 田民波,薄膜技術與薄膜材料,五南圖書出版社,民國96年。
35. D. D. Malinovska, O. Angelov, M. S. Vassileva, V. Grigorov, J. C. Pivin, “Polycrystalline Si films on glass substrates prepared by metal induced crystallization,” 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, Vol. 3, 2004, pp. 530-534.
36. C. Y. Yuen, M. C. Poon, M. Chan, W. Y. Chan, and M. Qin, “TFT fabrication on MILC polysilicon film with pulsed rapid thermal annealing,” Electron Devices Meeting, 2000, pp. 72-75.
37. N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, 1994, Vol. 41, pp. 1876-1879.
38. T. C. Cheng, W. C. Chang, K. F. Yarn, C. F. Lo, J. K. Kuo, “Optimization of excimer laser annealing on low temperature polysilicon for thin film transistor applications,” 8th International Conference on Solid-State and Integrated Circuit Technology, 2006, pp. 266-268.
39. G. K. Giust and T. W. Sigmon,, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering,” IEEE Trans. Electron Devices, Vol. 45, 1998, pp. 925-932.
40. Y. T. Lin, C. Chen, J. M. Shieh, and C. L. Pan, “Stability of continuous-wave laser-crystallized epilike silicon transistors,” Appl. Phys. Lett., Vol. 90, 2007, pp.073508.
41. S. Luan and G. W. Necudeck, “An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin transistors,” J. Appl. Phys., 1992, pp.766-772.
42. N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Irnai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunnelingultra-thin gate oxide on MOSFET scaling,” Symposium on VLSI Technology, 1999, pp. 73-74.
43. A. Khamesra, R. Lal , J. Vasi, A. Kurriar K. P., and J. K. O. Sin, “Device degradation of n-channel poly-Si TFTs due to high field, hot carrier, and radiation stressing,” in Proc. IPFA, 2001, pp. 258-262.
44. N. Bhat, M. Cao, and K. C. Saraswat, “Bias temperature instability in hydrogenated thin-film transistors,” IEEE Trans. Electron Devices, Vol. 44, 1997, pp.1102-1108.
45. M. W. Ma, C. Y. Chen, W. C. Wu, C. J. Su, K. H. Kao, T. S. Chao, and T. F. Lei, “Reliability mechanisms of LTPS-TFT with HfO2 gate dielectric: pbti, nbti, and hot-carrier stress,” IEEE Trans. Electron Devices, Vol. 55, 2008, pp.1153-1160.
46. C. Y. Chen, M. W. Ma, W. C. Chen, H. Y. Lin, K. L. Yeh, S. D. Wang, and T. F. Lei, “Analysis of negative bias temperature instability in body-tied low-temperature polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., Vol. 29, 2008, pp.165-167.
47. M. W. Ma, C. Y. Chen, C. J. Su, W. C. Wu, Y. H. Wu, K. H. Kao, T. S. Chao, and T. F. Lei, “ Characteristics of pbti and hot carrier stress for LTPS-TFT with high-k gate dielectric,” IEEE Electron Device Lett., Vol. 29, 2008, pp.171-173.
48. C. Y. Chen, J. W. Lee, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, M. W. Ma, S. D. Wang, and T. F. Lei, “A reliability model for low-temperature polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., Vol. 28, 2007, pp. 392-394.
49. 林鈺庭,連續波固態綠光雷射退火之面板型類磊晶矽電晶體,交通大學,材料科學與工程系所博士論文,民國96年。