(3.236.118.225) 您好!臺灣時間:2021/05/16 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱瑩鈞
論文名稱:藉電壓電容特性曲線瞭解不同綠光雷射能量退火下之多晶矽N型薄膜電晶體在DAHC和CHC測試下之可靠性劣化機制
論文名稱(外文):C-V Characteristics and Degradation of DAHC and CHC for CLC Poly-Si n-TFTs
指導教授:王木俊王木俊引用關係
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:晶界薄膜電晶體電容-電壓汲極雪崩熱載子效應通道熱載子效應
外文關鍵詞:grain boundariesthin-film transistors (TFT)capacitance-voltage (C-V)DAHCCHC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來液晶顯示器技術蓬勃發展,主動式液晶顯示器及市場的主流,對於顯示器之畫素,都是由薄膜電晶體來做為光開關,而一個TFT面板是由數百萬個或更多TFT元件所組成的。隨著消費者對視覺的要求愈多,有效地提升元件的載子移動率為近年來的熱門研究。但這也使得熱載子效應,隨著元件的載子移動率增加,顯得更嚴重,因此熱載子效應乃是TFT元件可靠度非常重要的議題。
本研究所使用的連續波綠光雷射結晶(Continuous-wave green laser-crystallization, CLC)多晶矽n型薄膜電晶體(Polycrystalline silicon thin-film transistor, poly-Si n-TFT),因其具有高載子移動率,對驅動電路(Driver IC)整合於玻璃基板(chip-on-glass, COG)的製程技術有不錯的進展,故為主要的研究對象。沿用傳統的金氧半場效應電晶體(Metal-oxide-semiconductor field-effect transistors, MOSFETs)之可靠度觀念,本論文探討爐管活化之連續波綠光雷射結晶多晶矽n型薄膜電晶體,及雷射活化之連續波綠光雷射結晶多晶矽n型薄膜電晶體,兩種元件在汲極雪崩熱載子(Drain-avalanche hot-carrier, DAHC)應力和通道熱載子(Channel hot-carrier, CHC)應力後,元件參數值劣化的機制。
由實驗數據得知,經過應力測試(stress)之後,Id-Vd及C-V曲線有明顯的下降或是偏移的現象。此外,本論文亦研究在不同的頻率操作下,經DAHC應力和CHC應力後,觀察其C-V曲線之變化;再者,使用頻率變化和小訊號振幅電壓變化之量測條件,分析電位阱的種類,以及元件故障的現象。

The color liquid crystal display (LCD) technology is rapid growth in recent years. Most of the markets are covered by active matrix LCD (AM-LCD) using amorphous silicon TFT (a-Si TFT) as a switch device for each sub-pixel. A TFT panel was build by million of TFT devices.
In this study, CLC poly-Si n-TFT is one of candidates to integrate circuits into chip-on-glass (COG) technology. According to the previous reliability concepts for metal-oxide-semiconductor field-effect transistors (MOSFETs), we investigated the degradation mechanisms between drain avalanche hot-carrier (DAHC) and channel hot-carrier (CHC) stresses on n-TFTs with different elevated temperatures. After stress, the phenomena of Id-Vd curves and C-V curves were obviously decreased and shifted.
As device scaling down, the device operational voltage still decreases slowly. When the electric field in the channel near the drain region is stronger, the hot carrier effect is more serious as the device dimensions are shrunk. Therefore, the hot carrier effect is still an important reliability issue in the present TFT devices. In this study, we also discussed the degradation phenomena of CHC and DAHC at different frequencies with observing C-V curves.
Furthermore, by using the adjustable frequencies and applied small signals with Agilent 4284A, trap species and failure phenomena related to the different laser-annealing energies can be clarified.

第一章 緒論 1
1.1 簡介 1
1.2 研究動機 2
第二章 元件物理概論 3
2.1 半導體材料 3
2.2 晶體的排列 3
2.3 載子的傳輸方式 5
2.4 能帶與能隙 8
2.5 p-n接面 9
2.5.1 擴散電流 10
2.5.2 空間電荷與空乏區寬度 14
2.6 MOSFET元件物理特性 16
2.7 MOSFET能帶圖 17
2.8 MOSFET元件輸出特性曲線 24
2.8.1 截止區(Cutoff Regoin) 24
2.8.2 線性區(Linear Region) 24
2.8.3 飽和區(Saturation Region) 26
2.9 MOSFET元件轉換特性取線 27
2.10 次臨界電壓 29
2.10.1 次臨界電壓對元件之重要性 31
2.11 理想MOSFET之C-V特性 32
2.11.1 累積區域(Accumulation Region) 35
2.11.2 空乏區域(Depletion Region) 35
2.11.3 反轉區域(Inversion Region) 36
2.12 氧化層電荷 36
2.12.1 接面缺陷電荷(Qit) 37
2.12.2 固定氧化層電荷(Qf) 37
2.12.3 氧化層缺陷電荷(Qot) 38
第三章 薄膜電晶體 39
3.1 多晶矽薄膜電晶體概要 39
3.2 多晶矽薄膜與非晶矽薄膜電晶體 40
3.3 多晶矽薄膜電晶體成膜機制 42
3.4 多晶矽薄膜電晶體之結晶 44
3.5 多晶矽之結晶法 45
3.5.1 多晶矽沉積 45
3.5.2 固相結晶法 45
3.5.3 金屬誘發結晶法 45
3.5.4 準分子雷射結晶法 46
3.5.5 連續波綠光雷射結晶法 48
第四章 實驗與結果 49
4.1 整體實驗架構說明 49
4.1.1 手動探針量測平台(Manual probe station) 49
4.1.2 半導體特性系統(Keithley C4200) 50
4.1.3 被動元件精密型RLC表(Agilent 4284A) 51
4.2 元件介紹 53
4.3 實驗結果 55
第五章 結論 69
參考文獻 70

[1] S. B. Park, J. D. Leed, and T. Y. Kim, “Learning by doing and spillovers: an empirical study on the TFT-LCD industry ,” in IEEE Tech., pp. 363-367, 2003.
[2] C. T. Liu, “Revolution of the TFT LCD Technology,” in IEEE Tech., vol. 3, pp. 342-350, 2007.
[3] Y. C. Fan, and Y. C. Liu, “High-Speed Memory Cell Circuit Design Based on Low-Temperature Poly Silicon TFT Technology,” Magnetics, IEEE Transactions on, vol. 45, pp. 2320-2323, 2009.
[4] 郭啟全, 準分子雷射退火矽膜之再結晶機制研究, 機電與工業管理文彙。
[5] K. K. Moez, “An integrated a-Si TFT demultiplexer for driving gate lines in active-matrix arrays,” in IEEE Tech., vol. 1, pp. 940-943, 2004.
[6] A. Teramoto, R. Kuroda, M. Komura, K. Watanabe, S. Sugawa, and T. Ohmi, “Capacitance-Voltage measurement method for ultrathin gate dielectrics using LC resonance circuit,” IEEE, vol. 19, pp. 43-49, 2006.
[7] X. Zhang and K. Ding, “Field-enhanced nonequilibrium C/V and I/V characteristics of MOS capacitor under linear voltage ramp bias,” IEEE, vol. 143, pp. 343-347, 1996.
[8] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE, vol. 4, pp. 457-466, 2004.
[9] G. J. Dunn and J. T. Krick, “Channel hot-carrier stressing of reoxidized nitrided oxide p-MOSFETs,” IEEE, vol. 38, pp. 901-906, 1991.
[10] S. M. Sze, “Semiconductor Devices Physics and Technology,” Wiley, 2002.
[11] 劉傳璽,陳進來,CMOS元件物理與製程整合,五南,民95年。
[12] Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, 1998.
[13] 王木俊,劉傳璽,薄膜電晶體液晶顯示器原理與實務,新文京,2008年。
[14] 陳志強,LTPS低溫複晶矽顯示器技術,全華,2004年。
[15] A. Mimura, N. Konishi, K. Ono, J. L. Ohwada, Y. Hosokawa, Y. A. Ono, T. Suzuki, K. Miyata and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD,” IEEE, vol. 36, pp. 351-359, 2003.
[16] P. Mei, J. B. Boyce, D. K. Fork, M. Hack, R. Lujan and S. E. Ready, “Poly-Si peripheral circuits and contact properties of laser processed poly-Si thin film transistors,” IEEE, pp. 721-723, 1995.
[17] 曾俊豪, FPD雷射退火技術應用與分析, 平面顯示器製程設備技術專輯。
[18] D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, V. Grigorov and J. C. Pivin, “Polycrystalline Si films on glass substrates prepared by metal induced crystallization,” IEEE, vol. 3, pp. 530-534, 2004.
[19] C. C. Tsai, K. F. Wei, Y. J. Lee, H. H. Chen,J. L. Wang, I. C. Lee and H. C. Cheng, “High-Performance Short-Channel Double-Gate Low-Temperature Polysilicon Thin-Film Transistors Using Excimer Laser Crystallization,” Electron Device Letters, IEEE, vol. 28, pp. 1010-1013, 2007.
[20] Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki and A. Mimura, “Crystallization of Double-Layered Silicon Thin Films by Solid Green Laser Annealing for High-Performance Thin-Film Transistors,” IEEE Elect. Device Lett., 28, pp. 395-397, 2007.
[21] Y. T. Lin, J. M. Shieh and C. Chen, “Enhanced Hole Mobility and Reliability of Panel Epi-Like Silicon Transistors Using Backside Green Laser Activation, ” IEEE Elect. Device Lett., 28, pp. 790-792, 2007.
[22] S. C. Huang, Y. H. Kao and Y. H. Tai, “Study on electrical degradation of p-type low-temperature polycrystalline silicon thin film transistors with C–V measurement analysis,” S-C. Huang et al. / Thin Solid Films., IEEE, 515, pp. 1206-1209, 2006.
[23] M. C. Wang, Z. Y. Hsieh, Y. C. Chu, C. Chen, H. W. Chen, C. H. Tu, S. Y. Chen, S. H. Lee and H. S. Huang, “C-V Characteristics of DAHC and CHC Stress for CLC Poly-Si n-TFTs,” IEDMS, 2008.
[24] Z. Chen, K. Hess, J. Lee, J. W. Lyding, E. Rosenbaum, I.. Kizilyalli, S. Chetlur and R. Huang, “On the mechanism for interface trap generation in MOS transistors due to channel hot carrier stressing,” IEEE Elect. Dev., 21, pp. 24-26, 2000.
[25] I. C. Chen, J. Y. Choi, T. Y. Chan, T. C. Ong and C. Hu, “The effect of channel hot carrier stressing on gate oxide integrity in MOSFET,” IEEE Elect. Dev., pp. 01-07, 1998.
[26] Y. T. Yeow, C. H. Ling and L. K. Ah, “Observation of MOSFET degradation due to electrical stressing through gate-to-source and gate-to-drain capacitance measurement,” IEEE Elect. Dev., 12, pp. 366-368, 1991.
[27] S. Bindra, S. Haldar and R. S. Gupta, “Gate capacitance characteristics of a poly-Si thin film transistor,” Solid-State Electronics., 48, pp. 675-681, 2004.
[28] M. C. Wang, Z. Y. Hsieh, S. Y. Chang, C. Chen, C. H. Tu, S. Y. Chen, S. C. Lee and H. S. Huang, "The Switch of the Worse Case on DAHC Reliability for CLC poly-Si n-TFTs with Green-Laser Activation," IEDMS, 2008.
[29] S. C. Lee, M. C. Wang, Z. Y. Hsieh, C. H. Su, C. Chen, Y. T. Lin, J. M. Shieh and H. S. Huang, “Transformation of the Worst Case of CHC Reliability for CLC poly-Si TFTs with Green-Laser Anneal,” IEDMS, 2008.
[30] K. C. Moon, J. Y. Lee, and M. K. Han, “The Study of Hot-Carrier Stress on Poly-Si TFT Employing C–V Measurement,” IEEE Elect. Dev., 52, pp.512-517, 2005.
[31] A. Khamesra, R. Lal, J. Vasi, K. P. Kumar and J. K. O. Sin, “Device degradation of n-channel poly-Si TFTs due to high-field, hot-carrier and radiation stressing,” IEEE Elect. Dev., pp. 258-262, 2001.
[32] S. Maegawa, T. Ipposhi, S. Maeda, H. Nishimura, T. Ichiki, M. Ashida, O. Tanina, Y. Inoue, T. Nishimura and N. Tsubouchi, “Performance and Reliability Improvements in Poly-Si TFT’s by Fluorine Implantation into Gate Poly-Si,” IEEE Elect. Dev., 42, pp. 1106-1112, 1995.
[33] Y. Toyota, T. Shiba and M. Ohkura, “Mechanism of Device Degradation under AC Stress in Low-Temperature Polycrystalline Silicon TFTs,” IEEE International Reliability Physics Symposium., pp. 278-282, 2002.
[34] J. S. Choi and G.. W. Neudeck, “Frequency-dependent capacitance-voltage characteristics for amorphous silicon-based metal-insulator-semiconductor structures,” IEEE Elect. Device Lett., 39, pp. 2515-2522, 1992.
[35] M. C. Wang, Z. Y. Hsieh, H. Y. Yang, C. Chen, Y. T. Lin, S. H. Lee, J. M. Shieh and H. S. Huang, “Performance of Green-Laser and Furnace Activations for CLC Poly-Si n-TFTs,” IEDMS, 2008.
[36] H. Y. Lee and L. C. Burton, “Effect of grain size on the grain boundary resistance of undoped barium titanate ceramics,” IEEE Elect. Devt., pp. 98-102, 1992.
[37] Y. Li, J. Y. Huang, B. S. Lee and C. H. Hwang, “Effect of single grain boundary position on surrounding-gate polysilicon thin film transistors,” Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pp. 1148-1151, 2007.
[38] P. Walker, H. Mizuta, S. Uno and Y. Furuta, “Grain boundary effects on subthreshold behaviour in single grain boundary nano-TFTs,” Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference on, pp. 207-210, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top