(18.206.187.91) 您好!臺灣時間:2021/05/19 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林世嘉
論文名稱:6~12GHz功率放大器與5.0GHz振盪器的設計與分析
論文名稱(外文):Designs and Analysis of the 6~12GHz Power Amplifiers and 5.0GHz Oscillator
指導教授:楊信佳陳啟文陳啟文引用關係
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:功率放大器振盪器E類放大器相位雜訊
外文關鍵詞:power amplifieroscillatorClass-E Amplifierphase noise
相關次數:
  • 被引用被引用:3
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本文探討無線通訊系統中射頻功率放大器(RF Power Amplifier)之設計,在這放大器的通訊系統中,位於發射端的放大器是低雜訊放大器(LNA, Low Noise Amplifier),而在通訊系統的接收端是E類功率放大器(Class-E Power Amplifier),兩者都稱做放大器,不過在這篇論文中,都是探討E類功率放大器為主,說明訊號在經過接收之後,電路的線性度、電路增益、功率增加與增加效率的問題。

Class E Power Amplifier
在本文之使用功率放大器之設計,從6GHz到12GHz的E類放大器,S(2,1)定在20dB以上,為此阻抗匹配必須作好以致S(1,1)與S(2,2)要夠低,所以在頻率一直提高的同時,也顧到良好的隔離度與效率。吾人考慮輸入功率對輸出功率所考量的線性度與雜訊因子,所設計的不同中心工作頻率的功率放大器,彼此作一比較,在一般的射頻電路中,E類放大器常在於發射機的最後一端,此論文的電路模擬是使用安捷倫(AGILENT)的電路模擬軟體Advanced Design Software(ADS)做電路設計,所使用的主動元件則由台積0.18m製程所作成的RF-NMOS。

關 鍵 詞:功率放大器、E類放大器、阻抗匹配、線性度

Oscillator
在設計振盪器中,頻率是在模擬時振盪出來的,本電路的頻率是4.981GHz,所使用1.8V電壓下模擬,相位雜訊在100KHz與1MHz中,分別為-100.3 dBc/Hz與-128.1 dBc/Hz,輸出功率是-5.698 dB,本電路所模擬出的輸出功率-5.698 dB,還是在容許的範圍內,而震盪幅度也因需求有不一樣的振幅,本實驗的振幅是143.9mV~494.7mV,振幅大約有350mV,在理想的振幅中是越大越好。

關 鍵 詞:震盪器、相位雜訊

Abstract
Class E Power Amplifier
In order to increase the power of the signals before transmitting, class-E power amplifiers are considered. Their power added efficiencies are high and the center working frequencies are easy to choose. The set of an inductor and a capacitor are separated from each other by an NMOS device and their product can determine the working frequency. One thus use Advanced Design System (ADS) provided by Agilent to do the impedance matching and verify the availability. Device models are provided through TSMC 0.18贡m process. In this thesis, class-E amplifiers individually working on 6.0 ~ 12.0 GHz are studied and designed. Gain values achieving above 20 dB are shown. Good isolations and good linearity were found. And surprisingly enough, the noise figures are found to be low, too.

Keywords:Power Amplifier、Class-E Amplifier、Impedance matching、linear

Oscillator
In the design of oscillator, the frequency can be simulated when the oscillator is oscillating. The oscillation frequency is 4.981GHz and the power supply is 1.8V, phase noise is -100.3dBc/Hz and -128.1dBc/Hz, respectively. The simulation of output power is -5.698dB, this result can be applied in a RF-Communication circuit. The requirement of different circuit, the amplitude of oscillator is also different; the amplitude in this work is 350mV.

Keywords:oscillator、phase noise

目 錄

中文摘要 .……………………………..………………………………… i
英文摘要 .…………………………………….…………………………… ii
誌謝 .…………………………………………….…………………………iii
目錄.………………………………...……………………………………iv
表目錄 .…………………………………………………….…... vi
圖目錄 ..……………………………………………………………………vii
第一章 概論 .……………………………………………………….….…1
1.1 序論 .……………………………………...…….………………1
1.2 研究背景………………………...…….………………...1
1.3 論文概要 .………………………………………...……….…1
第二章 功率放大器 ……………………………….….……….……. …3
2.1 功率放大器的種類 ………………………………………………3
2.1.1 A類功率放大器 (class A) ………………..….………4
2.1.2 B類功率放大器 (class B) ……………………...………6
2.1.3 AB類功率放大器 (class AB) ………………………..……9
2.1.4 C類功率放大器 (class C) ……………………….….……10
2.1.5 D類功率放大器 (class D) ………………………....12
2.1.6 E類功率放大器 (class E) ……………………………13
2.2 所有的功率放大器比較 ……………………………………16
2.3 功率增益……………………………………………………17
2.4 功率放大器的動態範圍……………………….……………17
2.5 功率放大器的交互調變失真……………………….………18
2.5.1 第三階交互調變點……………………………………20
第三章 阻抗匹配…………………………………………………………...…22
3.1 基本概念 ………………………………………………………...…22
3.2 L-型阻抗匹配………………………………………………….……22
3.3 史密斯圖……………………………………………………….……25
3.3.1 阻抗的反射係數………………………………………………26
3.4 LC諧振(LC-tank) ……………………………………………………28
第四章 線性度 .…………………………………………….……….……. …30
4.1 1-dB壓縮點 …………………………………………………..……30
4.2 IIP3 , Third-Order Input Intercep Point(第三階輸入截斷點) ..……31
4.3 非線性效應(Effect of Nonlinearity) …………………………..……33
4.4 雜訊指數(Noise Figure) ………………………………………….…34
4.5 品質因素(Quality Factor) …………………………………………..35
第五章 S-參數………………………………………………………………...37
5.1 S-參數之理論 ……………………………………………………...37
5.2 S-參數之雙埠網路 ………………………………………...………37
第六章 E類射頻放大器………………………………………………………41
6.1 class E 功率放大器(Power Amplifier) ……………………………41
6.1.1 class E功率放大器之設計 ……………………………...……42
6.1.2 class E功率放大器之電路 ……………………………….…..42
6.1.3 class E功率放大器之模擬電路…………………………….…43
6.1.4 class E功率放大器之模擬數據……………………………….43
6.1.5 class E功率放大器之模擬圖…………………………….……44
第七章 振盪器之原理……………………………………………………..…48
7.1 振盪器之原理………………………………………………..…….49
7.1.1 回授型震盪器…………………………………………………49
7.1.2 巴克豪森準則……………………………………………..…..49
7.2 振盪器之相位雜訊…………………………………………..……50
第八章 振盪器之設計……………………………………………………..…51
8.1 振盪器之設計架構………………………………………….……..52
8.2 振盪器之電路…………………………………………….………..52
8.3 振盪器之模擬數據與比較…………………………………..…….52
8.4 振盪器之模擬波形……………………………………………..….54
結論…………………………………………………………………………..….56
參考文獻 …………………………………………………………………….…57

參考文獻
1. 陳柏毓、楊信佳、王垂堂,5.0GHz射頻E類放大器,高速電路設計研討會,2007年5月。
2. 施銘鎧,利用訊號產生器與頻譜分析儀來量測 RF 放大器的非線性特性。
3. 藍國桐,通訊原理與應用 第二版,全華圖書,2004。
4. 李亮輝,802.11 WLAN接收機射頻系統規劃與5GHz CMOS差動LNA/MIXER之設計,國立成功大學,碩士論文,2002。
5. 袁帝文、王岳華、謝孟翰、王弘毅,高頻通訊電路設計,高立圖書,2000。
6. Macrobio Lim., ”Power Gain and Stability of Multistage Narrow-Band Amplifiers Employing Nonunilateral Electron Devices, IEEE, Jun 1960 Page(s):158 – 166.
7. Jae Hoon Jeong; Gue Hong Kim; Byeong Rok Min; Che Hong Ahn; Gyu Hyeong Cho., “A high efficiency class A amplifier accompanied by class D switching amplifier”, IEEE, Volume 2, 22-27 June 1997 Page(s):1210 - 1216 vol.2 Digital Object Identifier 10.1109/PESC.1997.616906.
8. Hamdane, W.; Birafane, A.; Kouki, A.B.; Gagnon, F., “Linearization of Class B Amplifier and Application to Outphasing Systems”, IEEE, July 30 2007-Aug. 2 2007 Page(s):543 - 546 Digital Object Identifier 10.1109/ISSSE.2007.4294533.
9. Loikkanen, M.; Keranen, P.; Kostamovaara, J., “Single supply high PSRR class AB amplifier”, IEEE, Volume 44, Issue 2, January 17 2008 Page(s):70 - 71 Digital Object Identifier 10.1049/el:20082922.
10. Everitt, W.L., “Optimum Operating Conditions for Class C Amplifiers”, IEEE, Volume 22, Issue 2, Feb. 1934 Page(s):152 – 176.
11. Johnson, T.; Stapleton, S.., “Available load power in a RF class D amplifier with a sigma-delta modulator driver”, IEEE, 19-22 Sept. 2004 Page(s):439 – 442.
12. Suetsugu, T.; Kazimierczuk, M.K.., “Output Characteristics of Class E Amplifier With Nonlinear Shunt Capacitance Versus Supply Voltage”, IEEE, 27-30 May 2007 Page(s):541 - 544 Digital Object Identifier 10.1109/ISCAS.2007.378690.
13. Thompson, M.; Fidler, J.K.., “Determination of the impedance matching domain of impedance matching networks”, IEEE, Oct. 2004 Page(s):2098 - 2106 Digital Object Identifier 10.1109/TCSI.2004.835682.
14. Andreani, P.; Xiaoyan Wang; Vandi, L.; Fard, A.., “A study of phase noise in colpitts and LC-tank CMOS oscillators”, IEEE, Issue 5, May 2005 Page(s):1107 - 1118 Digital Object Identifier 10.1109/JSSC.2005.845991.
15. Dobershtein, S.A.; Malyukhov, V.A.., “SAW ring filters with insertion loss of 1 dB”, IEEE, May 1997 Page(s):590 - 596 Digital Object Identifier 10.1109/58.658311.
16. Balashov, E.V.; Pasquet, D.; Korotkov, A.S.; Bourdel, E.; Giannini, F.., “Automatization of compression point 1dB (CP1dB) and input 3rd order intercept point (IIP3) measurements using lab VIEW platform”, IEEE, July 2005 Page(s):195 - 198 Vol. 1 Digital Object Identifier 10.1109/ISSCS.2005.1509887.
17. Manjure, D.P.; Makram, E.B.., “Effect of nonlinearity and unbalance on power factor”, IEEE CNF, July 2000 Page(s):956 - 962 vol. 2 Digital Object Identifier 10.1109/PESS.2000.867501.
18. Adamski, W.., “Noise figure sensitivity to gain uncertainty”, IEEE CHF, May 2002 Page(s):596 - 599 vol.2 Digital Object Identifier 10.1109/MIKON.2002.1017917.
19. Kesari, V.., “A Simple Electromagnetic Analysis for Ohmic Quality Factor and RF Efficiency for 42 GHz, TE03-mode, Feebly Tapered Gyrotron Cavity”, IEEE CNF, Dec. 2007 Page(s):1 - 4 Digital Object Identifier 10.1109/APMC.2007.4554880.
20. Yue Yu, Long Bu, Shifeng Shen, Bahar Jalali-Farahani, Golsa Ghiaasi,“A 1.8V Fully Integrated Dual-band VCO for Zero-IF WiMAX/WLAN Receiver in 0.18μm CMOS”, IEEE Department of Electrical and Computer Engineering The Ohio State University Columbus, OH 43210, USA.
21. Kozlovski, N.Y.; Gallagher, D.R.; Malocha, D.C.; Hague, E., “Design of Mini-Modular Oscillators using RF and Microwave Design Techniques”, IEEE CNF, June 2006 Page(s):351 – 357.
22. Xiaojuan Ou; Wei Zhou; Hongbo Kang, “Phase-noise Analysis for single and Dual-mode Colpitts Crystal Oscillators”, IEEE CNF, June 2006 Page(s):575 – 581.
23. Imm, Q.L.S.; Kordesch, A.V.; Majlis, B.Y., “An 180 nm CMOS single inverter 2.4 GHz LC oscillator”, IEEE CNF, Dec. 2005.
24. Kurachi, S.; Yoshimasu, T.; Itoh, N.; Yonemura, K., “5-GHz Band Highly Linear VCO IC with a Novel Resonant Circuit”, IEEE CNF, Jan. 2007 Page(s):285 – 288.
25. Jang, S.-L.; Chuang, Y.-H.; Lee, S.-H.; Chi, L.-R.; Lee, C.-F., “An Integrated 5–2.5-GHz Direct-Injection Locked Quadrature LC VCO”, IEEE JNL, Feb. 2007 Page(s):142 – 144.
26. Wei-Hsuan Tu; Jyh-Yih Yeh; Hung-Chieh Tsai; Chorng-Kuang Wang., “A 1.8V 2.5-5.2 GHz CMOS dual-input two-stage ring VCO”, IEEE CNF, Aug. 2004 Page(s):134 – 137.
27. Yunseong Eo; Keechul Kim; Byungdu Oh., “Low noise 5 GHz differential VCO using InGaP/GaAs HBT technology”, IEEE JNL, July 2003 Page(s):259 – 261.
28. Yue Yu; Long Bu; Shifeng Shen; Bahar Jalali-Farahani; Golsa Ghiaasi; Pengbei Zhang; Mohammed Ismail, “A 1.8 V fully integrated dual-band VCO for zero-IF WiMAX/WLAN receiver in 0.18 /spl mu/m CMOS”, IEEE CNF, Aug. 2005 Page(s):1259 – 1262.
29. Hara, Y.; Sakurai, H.; Sugimoto, Y.,“A 2.5 GHz CMOS LC VCO with improved phase noise based on the transformer feedback scheme”, IEEE CNF, Dec. 2006 Page(s):1004 – 1007.
30. Ming-Da Tsai; Yi-Hsien Cho; Huei Wang, “A 5-GHz low phase noise differential colpitts CMOS VCO”, IEEE JNL, May 2005 Page(s):327 – 329.
31. Lin, J.-H.; Kao, Y.-H., “A Low Phase-Noise Voltage-Controlled SAW Oscillator With Surface Transverse Wave Resonator for SONET Application”, IEEE JNL, Jan. 2007 Page(s):60 – 65.
32. Galliou, S.; Sthal, F.; Mourey, M., “New phase-noise model for crystal oscillators: application to the Clapp oscillator”, IEEE JNL, Nov 2003 Page(s):1422 – 1428.
33. Shi-Jia Lin, Hsin-Chia Yang, heng-Yong Wang, Zhi-Guang Feng, Cheui-Tang Wang, “Designs and Analysis of the 6~12GHz Power Amplifiers”, Ming-Chuan University’s Optoelectronic Devices, Circuits and Systems Design Conference.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top