(3.238.173.209) 您好!臺灣時間:2021/05/12 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭瑞鎮
論文名稱:印刷電路板設計最佳化之研究-以個人電腦北橋到同步動態隨機存取記憶體之電路為例
論文名稱(外文):The Study of Optimizing Printed Circuit Board Design-A Case Study of the Circuit between North Bridge and SDRAM
指導教授:徐志明徐志明引用關係
學位類別:碩士
校院名稱:明新科技大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:印刷電路板類神經網路望想函數基因演算法粒子群最佳化多重品質特性參數設計
外文關鍵詞:Printed Circuit BoardNeural NetworkDesirability FunctionGenetic AlgorithmsParticle Swarm OptimizationMulti-response Parameter Design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
印刷電路板(printed circuit board, PCB)幾乎存在任何的電子裝置中,其主要功能是用以固定電子零件以及零件之間的電流連接。印刷電路板的疊構設計、實體幾何條件及電氣規則設定是影響印刷電路板訊號品質的主要因素。對高速信號而言,不適當的疊構、實體及電氣規則設定很容易造成信號超出規格界限,最終使得產品變得非常不可靠。傳統上,有經驗的工程師會參考印刷電路板設計指南以及積體電路(integrated circuit, IC)供應商的建議,以試誤法決定最佳的疊構設計、實體幾何條件及電氣規則設定。然而,這樣卻無法保證這些印刷電路板設計參數是真正最佳值。本研究結合類神經網路、望想函數、基因演算法及粒子群最佳化提出一個最適化印刷電路板參數設計,藉以改善其效能的整合式演算程序。同時,透過一個改善個人電腦系統中北橋(north bridge, NB)和同步動態隨機存取記憶體(synchronous dynamic random access memory, SDRAM)之間電路設計的案例,以驗證所提演算法的可行性和有效性。驗證結果顯示信號的所有品質特性都能非常靠近其理想值且完全符合其規格限制。因此,本研究所提的整合式演算程序在解決多重品質特性參數設計問題上可被認為是一種有效的工具。
The printed circuit board (PCB) that is mainly the base of the electronic components and conducting electricity for them almost exists in any electronic device. The PCB stackup design, the physical rule setting and electrical rule setting can be considered to be the major factors that influence the quality of signals in a PCB. For a high speed signal with the improper PCB stackup design and settings of physical and electrical rules will cause the signal out of the defined specification and finally contribute to a low reliability device. Traditionally, experienced engineers referred to the recommended PCB design guides and chipset specifications by the integrated circuit (IC) suppliers to determine the optimal PCB stackup, physical rule setting and electrical rule setting through trial and error. However, this approach cannot guarantee the parameter settings in PCB design are truly optimal. This study proposes an integrated procedure for optimizing PCB design parameters to improve the performance of PCBs. The proposed procedure combines the neural network, desirability functions, genetic algorithms and particle swarm optimization to solve multi-response parameter design problems. A case of involving the PCB design improvement in the circuit between north bridge (NB) and synchronous dynamic random access memory (SDRAM) in a personal computer (PC) system was used to demonstrate the feasibility and effectiveness of the proposed optimization procedure. The confirmation results reveal that each quality characteristic can approach to its perfect state very closely and fulfill the required specifications. Consequently, the proposed procedure can be considered an effective method of resolving multi-response parameter design problems.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
1.4 研究步驟 2
1.5 研究限制 4
第二章 文獻探討 5
2.1 印刷電路板設計 5
2.1.1 印刷電路板 5
2.1.2 印刷電路板製造流程 7
2.1.3 印刷電路板設計流程 8
2.1.4 印刷電路板的疊構設計 9
2.1.5 實體幾何條件設定 10
2.1.6 電氣規則設定 10
2.2 田口方法 11
2.3 多重品質特性參數設計問題 15
2.4 倒傳遞類神經網路 16
2.5 望想函數 17
2.6 基因演算法 20
2.7 粒子群最佳化 23
第三章 研究方法 26
3.1 印刷電路板設計所面臨的問題 26
3.2 整合式參數設計最佳化程序 27
3.3 應用最佳化程序的進一步說明 30
第四章 實例驗證 33
4.1 個人電腦的基本架構 33
4.2 實驗與資料的蒐集 34
4.3 類神經網路模式建構 41
4.4 參數最佳化 44
4.4.1 以基因演算法進行參數最佳化 44
4.4.2 以粒子群最佳化進行參數最佳化 48
4.5 確認實驗 52
4.6 與田口方法的比較 53
4.7 基因演算法與粒子群最佳化的比較 59
第五章 結論與未來研究方向 63
5.1 結論 63
5.2 未來研究方向 63
附錄一 65
參考文獻 68

Aggarwal, A., Singh, H., Kumar, P. and Singh, M., 2008, “Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function”, Journal of Materials Processing Technology, Vol.205, pp.42-50.
Abraham, A., Guo, H. and Liu, H., 2006, “Swarm intelligence: Foundations, perspectives and applications”, In Nedjah, N. and Macedo Mourelle, L. de (Eds.), Swarm Intelligent Systems, pp.3-25, Berlin: Springer-Verlag.
Chakraborty, S. and Bordoloi, R., 2006, “Concurrent optimisation of a computer vision system's multiple responses”, International Journal of Advanced Manufacturing Technology, Vol.28, pp.577-583.
Chang, H.-H., Hsu, C.-M. and Liao H.-C., 2007, “Robust parameter design for signal-response systems by soft computing”, International Journal of Advanced Manufacturing Technology, Vol.33, pp.1077-1086.
Chaulia, P. K. and Das, R., 2008, “Process parameter optimization for fly ash brick by Taguchi method”, Materials Research-IBERO-American Journal of Materials, Vol.11, pp.159-164.
Derringer, G. and Suich, R., 1980, “Simultaneous optimization of several response variables”, Journal of Quality Technology, Vol.12, pp.214-219.
Duenas, A. and Petrovic D., 2008, Multi-objective genetic algorithm for single machine scheduling problem under fuzziness”, Fuzzy Optimization and Decision Making, Vol.7, pp.87-104.
Eberhart, R. C. and Shi, Y., 2001, “Particle swarm optimization: developments, applications and resources”, Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2001), Seoul, Korea, IEEE Service Center, Piscataway, New Jersey.
Fausett, L., 1994, Fundamentals of Neural Networks: Architecture, Algorithms, and Applications, Prentice-Hall, New Jersey.
Gen, M. and Cheng, R., 2000, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York.
Gilbert, J. M., Bell, I. M. and Johnson, D. R., 2005, “Circuit design optimization based on quality cost estimation”, Quality and Reliability Engineering International, Vol.21, pp.367-386.
Goldberg, D. E., 1989, Genetic algorithm in search, optimization and machine learning, Addison-Wesley, New York.
Goudos, S. K., Rekanos, I. T. and Sahalos, J. N., 2008, “EMI reduction and ICs optimal arrangement inside high-speed networking equipment using particle swarm optimization”, IEEE Transactions on Electromagnetic Compatibility, Vol.50, pp.586-596.
Hagan, M. T., Demuth, H. B. and Beale, M., 1996, Neural Network Design, PWS, Boston.
Harrington, E. C., 1965, “The desirability function”, Industrial Quality Control, Vol.21, pp.494-498.
Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
Hsieh, K. L., 2006, “Parameter optimization of a multi-response process for lead frame manufacturing by employing artificial neural networks”, International Journal of Advanced Manufacturing Technology, Vol.28, pp.584-591.
Hsieh, K.-L., Tong, L.-I., Chiu, H.-P. and Yeh, H.-Y., 2005, “Optimization of a multi-response problem in Taguchi’s dynamic system”, Computer & Industrial Engineering, Vo.49, pp.556-571.
Hsu, C.-M., 2001, “Solving multi-response problems through neural networks and principal component analysis”, Journal of the Chinese Institute of Industrial Engineers, Vol.18, pp.47-54.
Hsu, C.-M., 2004, “Improving electroforming process in optical recordable media manufacturing via an integrated procedure”, Engineering Optimization, Vol.36, pp.659-675.
Hsu, C.-M., 2004, “An integrated approach to enhance the optical performance of couplers based on neural networks, desirability functions and tabu search”, International Journal of Production Economics, Vol.92, pp.241-254.
Hsu, C.-M., Chen, K.-Y. and Chen, M.-C., 2004, “Batching orders in warehouses by minimizing travel distance with genetic algorithms”, Computers in Industry, Vol.56, pp.169-178.
Hsu, C.-M. and Chen, K.-Y., 2005, “Optimizing a replication process in CD-R/DVD±R manufacturing using a hybrid procedure”, Journal of Quality, Vol.12, pp.299-312.
Hsu, C.-M. and Su, C.-T., 1998, “Multi-objective machine-component grouping in cellular manufacturing: a genetic algorithm”, Production Planning and Control, Vol.9, pp.155-166.
Hui, W., Dong, X. and Guanghong, D., 2008, “A genetic algorithm for product disassembly sequence planning”, Neurocomputing, Vol.71, pp.2720– 2726.
Hwang, R.-M. and Cha, K.-C., 2008, “Construction of a prediction model for the structural stability of a surface grinder using backpropagation neural network”, International Journal of Advanced Manufacturing Technology, Vol.37, pp.1093-1104.
Jami, K., Byung, C. and Jiju, A., 2008, “Development of an experiment-based robust design paradigm for multiple quality characteristics using physical programming”, International Journal of Advanced Manufacturing Technology, Vol.35, pp.1100-1112,
Jeon, B. J. and Kim, Y. H., 2008, “Parameter design of a coaxial cable insulation manufacturing process using axiomatic design and the Taguchi method”, Polymer-Plastics Technology & Engineering, Vol.47, pp.785-790.
Kennedy, J. and Eberhart, R. C., 1995, “Particle swarm optimization”, Proceedings of the IEEE International Conference on Neural Networks, Vol.4, pp.1942-1948, IEEE Service Center, Piscataway, New Jersey.
Kennedy, J., Eberhart, R. C. and Shi, Y., 2001, Swarm Intelligence, Morgan Kaufman Publishers, San Francisco.
Khuri, A. I. and Conlon, M., 1981, “Simultaneous optimization of multiple responses by polynomial regression functions”, Technometrics, Vol.23, pp.363-375.
Kim, K.-J. and Lin, D. K. J., 2000, “Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions”, Applied Statistics, Vol.49, pp.311-325.
Lee, T.-L., 2008, “Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan”, Engineering Applications of Artificial Intelligence, Vol.21, pp.63-72.
Liang, L. and Wu, D., 2005, “An application of pattern recognition on scoring Chinese corporations financial conditions based on backpropagation neural network”, Computers & Operations Research, Vol.32, 1115-1129.
Liao, H.-C., Chang, H.-H. and Hsu, C.-M., 2006, “Using canonical correlation to optimize Taguchi’s multiresponse problem”, Concurrent Engineering-Research and Applications, Vol.14, pp.141-149.
Liao, H.-T., Shie, J.-R. and Yang, Y.-K., 2008, “Applications of Taguchi and design of experiments methods in optimization of chemical mechanical polishing process parameters”, International Journal of Advanced Manufacturing Technology, Vol.38, pp.674-682.
Lin, J. L., Wang, K. S., Yan, B. H. and Tarng, Y. S., 2000, Optimization of electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology, Vol.102, pp.48-55.
Mohemmed, A. W., Sahoo., N. C. and Geok, T. K., 2008, “Solving shortest path problem using particle swarm optimization”, Applied Soft Computing, Vol.8, pp.1643–1653
Nedjah, N. and Mourelle, L. de M., 2006, Swarm Intelligent Systems, Springer-Verlag, Berlin.
Phadke, M. S., 1989, Quality Engineering Using Robust Design, Prentice-Hall, New Jersey.
Phadke, M. S., Kackar, R. N., Speeney, D. V. and Grieco, M. J., 1983, “Off-line quality control in integrated circuit fabrication using experimental design”, The Bell System Technical Journal, Vol.62, pp.1273-1309.
Ribardo, C. and Allen, T. T., 2003, “An alternative desirability function for achieving ‘six sigma’ quality”, Quality and Reliability Engineering International, Vol.19, pp.227-240.
Sivanandam, S. N. and Deepa, S. N., 2008, Introduction to Genetic Algorithms, Springer, New York.
Su, C.-T., Chen, M.-C. and Chan, H.-L., 2005, “Applying neural network and scatter search to optimize parameter design with dynamic characteristics”, Journal of the Operational Research Society, Vol.56, pp.1132–1140.
Su, C.-T., Hsu, C.-M. and Liao, D., 2002, “Improving the tap coupler optical performance in the fused process by the Taguchi method”, Quality Engineering, Vol.14, pp.553-561.
Sun, T.-H. and Tien, F,-C., 2008, “Using backpropagation neural network for face recognition with 2D + 3D hybrid information”, Expert Systems with Applications, Vol.35, pp.361-372.
Tarng, Y. S. and Yang, W. H., 1998, “Application of the Taguchi method to the optimization of the submerged arc welding process”, Materials and Manufacturing Processes, Vol.13, pp.455-467.
Tong, L.-I., Wang, C. H., Houng, J. Y. and Chen, J. Y., 2001, “Optimizing dynamic multi-response problems using dual response surface method”, Quality Engineering, Vol.14, pp.115-125.
Wang, C. H., 2007, “Dynamic multi-response optimization using principal component analysis and multiple criteria evaluation of the grey relation model”, International Journal of Advanced Manufacturing Technology, Vol.32, pp.617-624.
蘇朝墩,2003,品質工程,中華民國品質學會,臺北市。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔