(3.238.96.184) 您好!臺灣時間:2021/05/08 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃振宏
論文名稱:氧化鐵批覆於一維氧化鋅奈米結構製程及光學特性之研究
論文名稱(外文):Synthesism and photo-electric properties of Ferric oxide-coated 1-D ZnO nanostructure
指導教授:王進安王進安引用關係彭政雄彭政雄引用關係
學位類別:碩士
校院名稱:明新科技大學
系所名稱:精密機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:55
中文關鍵詞:氧化鐵氧化鋅奈米材料
外文關鍵詞:FeOZnOnanomaterials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:357
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是利用溶液析出法將濃氨水滴入已調配好之硝酸鐵溶液中,並固定硝酸鐵溶液濃度以控制濃氨水添加量以調整溶液pH值來製備氧化鐵粉體,進而觀察其結果與特性。調控硝酸鐵溶液酸鹼值至pH= 8 ~ 10,取其氧化鐵析出物做不同溫度50 oC ~ 1000 oC之熱處理,不同之酸鹼值並不會影響到氧化鐵產物的結構,但伴隨著熱處理溫度越高α-Fe2O3的結晶相愈為顯著,且氧化鐵粉體的光致發光反應在1000 oC最為顯著。
利用Vayssieres 所提出的“purpose - built materials”理論概念製備水溶液,再將已濺鍍好之氧化鋅薄膜的矽基板浸泡於調配至適當濃度之硝酸鋅溶液中,即可合成一維氧化鋅奈米料。當以不同反應溫度同樣持溫24小時後,發現雖然反應溫度越高,可以使氧化鋅奈米柱長成的速度越快,但是相對的卻會造成氧化鋅奈米柱擠壓堆疊的現象,此氧化鋅奈米柱並不利於批覆之用。
再利用低溫水溶液法製備出的氧化鐵披覆於一維氧化鋅奈米材料上,進而利用場發射電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)觀察氧化鐵披覆一維氧化鋅奈米複合材料之結構。

This experimentation drips into using the solution separation law the strong ammonia water mixes in the ferric nitrate solution, and the fixed ferric nitrate solution concentration controls strong ammonia water recruitment adjusted solution pH the value to prepare oxidizes the powdered iron body, then observes its result and the characteristic.
The regulative ferric nitrate solution PH value to pH= 8 ~ 10, takes its ferric oxide separation to make heat treatments of the different temperature 50 oC ~ 1000 oC, the different PH value will not affect the ferric oxide product structure, but will follow the heat treatment temperature to be higher α-Fe2O3 crystallization phase to obviously, and will oxidize the powdered iron body's photoluminescence response to be most remarkable in 1000 oC.
“Purpose - built materials which” proposed using Vayssieres theory concept preparation peroxide solution, will have splashed again plates the zinc oxide thin film xi the foundation plate immersion to mixing to zinc nitrate of solution in the suitable density, then synthesizes an univariate zinc oxide nanometer material.
When holds the warm 24 hours later similarly the different reaction temperature, discovered that although the reaction temperature is higher, may cause the speed which a zinc oxide nanometer column grows into to be quicker, but relative actually will create the phenomenon which the zinc oxide nanometer column extrusion will pile up one on top of another, this zinc oxide nanometer column will not favor gives a written reply to a subordinate.
The ferric oxide which prepares using the low temperature peroxide solution law throws over again turns round on univariate zinc oxide nanomaterials, then advantage use field emission gun scanning electron microscopy (FE-SEM) and the transmission electron microscope (TEM) observation ferric oxide throws over structure of the duplicate univariate zinc oxide nanometer compound materials.

摘要.........................................................I
Abstract....................................................II
誌謝........................................................IV
目錄.........................................................V
圖目錄.....................................................VII
表目錄......................................................IX
第一章 緒論..................................................1
第二章 文獻回顧..............................................2
2-1 氧化鐵簡介...............................................2
2-1-1 氧化鐵之結構 ...........................................2
2-1-2 氧化鐵粉體之製備......................................10
2-2 氧化鋅簡介..............................................11
2-2-1 氧化鋅之結構..........................................11
2-2-2 氧化鋅發光特性........................................15
2-2-3 氧化鋅之製備..........................................17
2-3 合成方法................................................20
2-3-1 氧化鋅薄膜............................................20
2-3-2 一維奈米氧化鋅結構....................................20
2-3-3 氧化鋅之摻雜方法......................................21
第三章 實驗製程與流程.......................................23
3-1 實驗使用原料............................................23
3-2 實驗及特性分析設備......................................24
3-2-1 實驗設備..............................................24
3-2-2 特性分析設備..........................................26
3-3 實驗製程與流程圖........................................28
3-3-1 氧化鐵粉體之製程......................................28
3-3-2 氧化鐵粉體之製程流程圖................................29
3-3-3 一維奈米氧化鋅之製程..................................30
3-3-4 一維奈米氧化鋅之製程流程圖............................31
3-3-5 氧化鐵披覆一維奈米氧化鋅之製程........................32
3-3-6 氧化鐵披覆一維奈米氧化鋅之製程流程圖..................33
第四章 結果與討論...........................................34
4-1 X光繞射分析(XRD)........................................34
4-2 光學性質分析(PL)........................................37
4-3 表面形貌分析(FE-SEM)....................................39
4-4 晶體結構分析(TEM).......................................43
4-5 氧化鐵披覆一維奈米氧化鋅分析............................45
第五章 結論.................................................48
第六章 參考文獻.............................................50

1.Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, J. Appl. Phys. 84, 3912 (1998).
2.Schwertmann U., and Cornell R. M., “Iron Oxides in the Laboratory”, VCH Publishers, Inc., New York, NY.
3.Zhang Tianshu, Luo Hongmei, Zeng Huanxing, Zhang Ruifang, Shen Yusheng, “Synthesis and gas-sensing characteristics of high thermostability γ- Fe2O3 powdr”, Sensors and Actuators B: Chemical, Volume 32, Issue 3, June 1996, Pages 181-184.
4.Anas Ansari, Jose Peral, Xavier Domènech, Rafael Rodriquez-Clemente, ”OXIDATION OF HSO3- IN AQUEOUS SUSPENSIONS α-Fe203, α-FeOOH, β-FeOOH AND γ-FeOOH IN THE DARK AND UNDER ILLUMINATION”, Environmental Pollution, Volume 95, Issue 3, 1997, Pages 283-288.
5.賴進興,”氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,博士論文,國立臺灣大學環境工程學研究所,1995年。
6.L. S. Darken and R. W. Gurry, J. Am. Chem. Soc. 68(5),789(1946).
7.Schwertmann, U. and Cornell, R.M. ,“The iron oxides: Structure, Properties, Reactions, Occurances, and Uses”, VCH Publishers, Inc. , Weinheim, 573pp, (1996).
8.Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, J. Appl. Phys. 84, 3912 (1998).
9.陳宏軍,”氧化鋅奈米粉末之製備與研究”,碩士論文,大同大學材料工程研究所,2004年。
10.Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, C. H. Liang, “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties”, Journal of Crystal Growth, Volume 234, Issue 1, 2002, Pages 171-175.
11.Jing Yu Lao, Jian Guo Wen, and Zhi Feng Ren, “Hierarchical ZnO Nanostructures”, Nano letters , vol.2, no.11, 1287-1291, 2002.
12.Seung Chul Lyu, Ye Zhang, Hyun Ruh, Hwack-Joo Lee, Hyun-WookShim, Eun-Kyung Suh, Cheol Jin Lee,” Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires” Chemical Physics Letters Volume 363, Issues 1-2, 2002, Pages 134-138.
13.J. J. Wu, S. C. Liu, ”Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater., 14, 215 (2002).
14.W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. 80, 4232 (2002).
15.J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO Nanobridges and Nanonails", Nano Letters, Vol.3, No.2, p235-238 , (2003).
16.W.I. Park , G.-C. Yi , M. Kim , S.J. Pennycook , “ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy”, Early View ,Volume 14 Issue 24, Pages 1841 – 1843.
17.W. J. Li, E. W. Shi, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203, 186 (1999).
18.X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, X.G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films”, Journal of Luminescence 99 (2002) 149–154.
19.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996).
20.C.J. Pan, C.W. Tu, C.J. Tun, C.C. Lee, G.C. Chi, “Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0 0 0 1)”, J. Crys. Grow., 305, 133 (2007).
21.B. Lin, Z. Fu, Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett.,79(7), 943 (2001) .
22.S. Bethke, H. Pan, and B. W. Wessels, “Luminescence of heteroepitaxial zinc oxide”, Appl. Phys. Lett. 52, 138 (1988).
23.葉集賢,”變阻器基材之氧化鋅陶瓷粉體水熱製備法”,碩士論文,國立台灣大學化工研究所,1997年。
24.M. Andres Verges, A. Mifsud and C. J. Serna, J. Cherm. Soc. Faraday Trans, 86, 6, 959(1990).
25.Kazumi Fujita, Keizo Matsuda, “Formation of Zinc Oxide by Homogeneous Precipitation Method”, Bull. Chem Soc. Jpn., 65, 2270(1992).
26.Yoshio Sakka, Kohmei Halada, and Eiichi Ozawa, Ceram. Trans., v3, 31(1990).
27.Alba Chittofrati and Egon Matijevic, “Uniform particles of Zinc Oxide of different morphologies”, Colloids and Surface, 48, 65-78(1990).
28.Kiichiro Kamata and Kikuo Miyokawa, “Synthesis of Zinc oxide powder by hydrolysis of BIS(Acetylacetonato )-Zinc(Ⅱ) in Aqueous Soultion”, Chemitry Letters, 2021-2022(1984).
29.Didier Jezequel, Jean Guenot, Noureddine Jouini, and Fernand Fievet, “Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics”, J. Mater. Res., 10[1], 77-83(1995).
30.O. Milosevic, and D. Uskokovic, “Synthersis of BaTiO3 and ZnO Varistor precursor powders by reaction spray pyrolysis”, Mater. Sci. and Eng., A128, 249-252(1993).
31.O. Milosevic, D. Uskokovic, L. J. Karanovic, M. Tomasevic-Canovic, and M. Trontelj, “Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process”, J. of Mater. Sci., 28, 5211-5217(1993).
32.Tian-Quan Liu, Osamu Sakurai, Nobuyasu Mizutani, Massnori Kato, “Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques”, J. of Mater. Sci., 21, 3698, (1986).
33.M. Singhal, V. Chhabra P. Kang and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion”, Materials Research Bulletin, 32[2], 239-247(1997).
34.B. P. Lim and J. Wang, S. C. Ng, C. H. Chew and L. M. Gan, ”A Bicontinuous Microemulsion Route to Zinc Oxide Powder”, Ceramics international, 24, 205-209(1998).
35.Qiping Zhong and Egon MatiJevic, “Preparation of uniform Zinc oxide colloids by controlled double-jet precipitation”, J. Mater. Chem., 6, 3, 443(1996).
36.M. Ohring, “Physical Vapor Deposition”, The Materials Science of Thin Films, Academic Press, U. K., (1992), Chap. 3.
37.S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, J. T. Fourkas, Appl. Phys. Lett. 83, 4821(2003).
38.Guoqiang Zhang, a Atsushi Nakamura, Toru Aoki, Jiro Temmyob, Yoshio Matsui, “Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate”, APL 89, 113112(2006).
39.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 209, 1947(2001).
40.X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, Science 303, 1348(2004).
41.Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 502(2003).
42.J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 81, 7(2002).
43.Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., 13[2], 113-116(2001).
44.Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kids, Eicke Weber, Richard Russo, Peidong Yang, “Room-Temperature Ultraviolet Nanowires Nanolasers”, Science, 292[8], 1897-1899(2001).
45.R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 889(1964).
46.L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15, 464, (2003).
47.L. Vayssieres, K. Keis, S. –E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material : 3D highly oriented microrod array of ZnO”, J. Phys. Chem. B, 105, 3350, (2001).
48.L. Vayssieres, K. Keis, A. Hagfeldt, S. –E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395, (2001).
49.Ruey-Chi Wang, Chuan-Pu Liu, and Jow-Lay Huang, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Appl. Phys. Lett. 88, 023111 (2006).
50.A. Onodera, N. Tamaki, Y. Kawamura, T. Sawada and H. Yamasihta, Jpn., J. Appl. Phys., 35 (1996) 5160.
51.A. Onodera, K. Yoshio, H. Satoh, H. Yamasihta and N. Sajagami, Jpn., J. Appl. Phys., 37 (1998) 5315.
52.A. Onodera, N. Tamaki, K. Jin and H. Yamasihta, Jpn., J. Appl. Phys., 36 (1997) 6008.
53.Z. C. Jin, I. Hamberg and C. G. Granqvist, J. Appl. Phys., 64 (1998) 5117.
54.Z. Y. Ning, S. H. Cheng, S. B. Ge, Y. Chao, Z. Q. Gang, Y. X. Zhang and Z. G. Liu, Thin Solid Films, 307 (1997) 50.
55.Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, “Synthesis of p-type ZnO "lms”, Journal of Crystal Growth, Volume 216, Issues 1-4, 15 June 2000, Pages 330-334.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔