(3.239.192.241) 您好!臺灣時間:2021/03/02 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗威
研究生(外文):Tsung-Wei Tsai
論文名稱:聚亞醯胺/無機奈米粒子光學奈米複合薄膜製備及其性質之探討
論文名稱(外文):Synthesis and characteristics of polyimide /inorganic nanoparticles optical nanocomposite films
指導教授:游洋雁
指導教授(外文):Yang-Yen Yu
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:117
中文關鍵詞:奈米複合物聚亞醯胺混成薄膜抗反射
外文關鍵詞:NanocompositePolyimideHybrid thin filmAnti-reflective
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究即利用末端具有羧酸官能基製備6FDA-6FpDA-4ABA聚亞醯胺與奈米二氧化矽製作混成薄膜,製備混成薄膜期間沒有使用任何的偶合劑及螯合劑,並隨著懸浮奈米二氧化矽的含量不同對其性質加以分析以求懸浮奈米二氧化矽含量於混成膜中最佳化條件之探討。由TGA及DSC檢測實驗結果顯示,聚亞醯胺混成懸浮奈米二氧化矽可增加其熱裂解及玻璃轉移溫度,並且隨著懸浮奈米二氧化矽含量的增加而增加。由FTIR光譜分析可知其水解能力隨著懸浮奈米二氧化矽含量的增加而有明顯的提升。由Ellipsometer的量測結果證實PS系列折射率範圍為1.575-1.479,而折射率隨懸浮奈米二氧化矽含量的改變可以調控。而在UV-vis的結果證實,此混成薄膜的cutout wavelength均在紫外光的範圍。由SEM及AFM的結果顯示,所製得之聚亞醯胺/奈米二氧化矽混成薄膜有良好的成膜性及表面平垣度,且含氟性物質之聚亞醯胺/奈米二氧化矽混成薄膜具有較低的含水率,並具有較低的截止波長及較高之光學穿透性。
第二部份是隨著奈米複合粒子的含量不同對其性質加以分析以求懸浮奈米複合粒子含量於混成膜中最佳化條件之探討,製備混成薄膜期間沒有使用任何的偶合劑及螯合劑。而在TGA及DSC檢測實驗結果顯示,聚亞醯胺混成懸浮奈米複合粒子可增加其熱裂解及玻璃轉移溫度,並且隨著懸浮奈米複合粒子含量的增加而增加。由FTIR光譜分析可知其水解能力隨著懸浮奈米複合粒子含量的增加而有明顯的提升。由Ellipsometer的量測結果證實PST系列折射率範圍為1.575-1.696,而折射率隨懸浮奈米複合粒子含量的改變可以調控。由高解析TEM觀察到無機奈米複合粒子具有結晶性,且晶粒大小約為20~25nm,而由XRD及選區繞射量測結果可證實晶體結構為二氧化鈦銳鈦礦;而在UV-vis的結果證實,此混成薄膜的cutout wavelength均在紫外光的範圍。由SEM及AFM的結果顯示,所製得之聚亞醯胺/奈米複合粒子混成薄膜有良好的成膜性及表面平垣度,且含氟性物質之聚亞醯胺/奈米複合粒子混成薄膜具有較低的含水率,並具有較低的截止波長及較高之光學穿透性。
第三部分成功製備聚亞醯胺/奈米複合粒子之有機無機混成光學薄膜。可將其應用在光學抗反射薄膜上,由UV-vis量測結果得知,當玻璃基板塗佈上所製備出的有機無機混成複合物時,可降低玻璃表面的反射率及增加其穿透率,經由設計不同的折射率及厚度可改變反射率的高低,而研究中也將抗反射薄膜在可見光範圍的反射率降至1%以下。
In this study, the polyimide-silica and polyimide-silica-titania hybrid thin films, 6FDA-6FpDA-4ABA/SiO2 (PS0-PS50) and 6FDA-6FpDA-4ABA/SiO2- TiO2 (PST0-PST50), were prepared from the 12nm colloidal silica and 20-25nm colloidal silica-titanium dioxide nanocomposites, respectively. The 6FDA-6FpDA-4ABA was synthesized from a polyimide bearing acid end groups. During the preparation, no additional coupling agents were used. In the study of polyimide-silica hybrid thin films, the strong interactions between the carboxylic acid and silica are observed and believed to prevent the macrophase separation. TGA analysis shows that the thermal decomposition temperatures (Td) increase with increasing silica content. UV-vis spectra show that the cutoff wavelength of prepared hybrid films can be tunable through the silica content. The ellipsometer analysis shows that the refractive index (n) of PS hybrid films is in the range of 1.575-1.479, which can be controlled by the silica content. The extinction coefficients (k) are almost zero in the 250–800 nm wavelength range, indicating the prepared hybrid films have an excellent optical transparency in both the UV and visible region. TEM images show that the particle size of silica in the hybrid thin films can be effectively controlled. The results of SEM and AFM show that all the prepared hybrid films have a good film formability and planarity. On the other hand, the strong interactions between the carboxylic acid and colloidal silica-titanium dioxide nanocomposite are also observed to prevent the macrophase separation in the polyimide/colloidal silica-titanium dioxide hybrid thin films. TGA analysis shows that the thermal decomposition temperatures (Td) increase with increased colloidal silica-titanium dioxide nanocomposite content. UV-vis spectra show that the cutoff wavelength of prepared hybrid films can be tunable through the colloidal silica-titanium dioxide nanocomposite content. The ellipsometer analysis shows that the refractive index (n) of hybrid films is in the range of 1.575-1.696, which can be controlled by the colloidal silica-titanium dioxide nanocomposite content. The extinction coefficients (k) are almost zero in the 250–800 nm wavelength range, indicating the prepared hybrid films have an excellent optical transparency in both the UV and visible region. The cross-sectional HR-TEM images of the PST100 powder show that the average size of titania nanocrystallites is 20-25nm. The XRD patterns and selected area diffraction (SAD) prove that the crystal phase of titania nanocrystallites is anatase. The results of SEM and AFM show that all the prepared hybrid films have a good film formability and planarity. The reflectance is less than 1.0 % in the visible range when the prepared hybrid thin films are applied to prepare the three-layer anti-reflective coating. These results show that the hybrid thin films have potential applications as anti-reflective coatings for optical devices.
目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
中文摘要 v
Abstract vii
目錄 ix
表目錄 xi
圖目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 有機無機奈米混成複合材料 2
1-2-2 聚亞醯胺簡介 4
1-2-2-1 可溶性聚亞醯胺合成理論 6
1-2-3 Sol-gel製程 7
1-2-4 以聚亞醯胺製備混成奈米複合材料 9
1-2-5 有機無機混成奈米複合材料及光學折射率 11
1-2-6 旋轉塗佈 11
1-2-7 光學抗反射薄膜 12
1-3 研究動機及目的 13
1-4 參考文獻 14
第二章 實驗 23
2-1 實驗藥品及材料 23
2-2 實驗儀器 26
2-2-1 分析儀器 27
2-3 實驗方法及步驟 30
2-3-1 製備聚亞醯胺/奈米二氧化矽混成光學薄膜 30
2-3-2 製備聚亞醯胺/Colloidal silica-Titanium dioxide複合奈米粒子混
成光學薄膜 31
2-4 混成光學薄膜結構與性質鑑定 32
第三章 製備聚亞醯胺/無機奈米粒子混成光學薄膜 44
3-1 聚亞醯胺/無機奈米二氧化矽粒子混成光學薄膜之製備 44
3-1-1 結構分析 44
3-1-2 熱性質分析 44
3-1-3 薄膜微結構分析 45
3-1-4 薄膜光學性質分析 46
3-1-5 結論 46
3-1-6 參考文獻 47
第四章 製備聚亞醯胺/無機複合奈米粒子混成光學薄膜 66
4-1 聚亞醯胺/無機二氧化矽-無機二氧化鈦複合奈米粒子混成光學薄膜之製備 66
4-1-1 結構分析 66
4-1-2 熱性質分析 66
4-1-3 薄膜微結構分析 67
4-1-4 薄膜光學性質分析 68
4-1-5 結論 69
4-1-6 參考文獻 70
第五章 以旋轉塗佈法製備抗反射薄膜 99
5-1 製備聚亞醯胺/Colloidal silica-Titanium dioxide複合奈米粒子混成光學
薄膜 99
5-2 製備聚亞醯胺/Titanium dioxide奈米粒子混成光學薄膜 100
5-3 製備三層抗反射薄膜於玻璃基板 101
5-3-1 三層抗反射薄膜於玻璃基板之光學性質 101
5-4 製備三層抗反射薄膜於PMMA基板 102
5-4-1 三層抗反射薄膜於PMMA基板之光學性質 102
5-5 結論 103
5-6 參考文獻 104
第六章 總結 116

表目錄
表1-1 用於聚亞醯胺-無機複合材料的無機物及其前驅物 17
表2-1 聚亞醯胺/奈米二氧化矽混成光學薄膜配方表 35
表2-2 聚亞醯胺/複合奈米粒子混成光學薄膜配方表 36
表3-1 Polyimide/colloidal silica混成材料配方表 50
表3-2 Polyimide/colloidal silica混成材料性質檢測之分析表 51
表4-1 Polyimide/複合奈米粒子混成光學薄膜配方表 73
表4-2 Polyimide/複合奈米粒子混成材料性質檢測之分析表 74
表4-3 銳鈦礦結構之JCPDS圖卡(PDF#21-1272) 75
表4-4 穿透式電子顯微鏡電子波長對照表 76
表5-1 於玻璃基板抗反射薄膜性質數據表 105
表5-2 於PMMA基板抗反射薄膜性質數據表 105

圖目錄
圖1-1 亞醯胺基結構 18
圖1-2 Kapton薄膜的結構;參考文獻[42] 18
圖1-3 熱溶液環化法示意圖;參考文獻[41] 18
圖1-4 化學環化法示意圖;參考文獻[41] 19
圖1-5 Tetraethoxysilane (TEOS)在酒精溶液中經水解(Hydrolysis)及縮合 19
圖1-6 不同PH 值時水解與縮合的反應速率示意圖;參考文獻[26] 20
圖1-7 不同PH值時顆粒形成之示意圖;參考文獻[28] 20
圖1-8 PI/SiO2 典型的合成流程圖:參考文獻[40] 21
圖1-9 PI/SiO2 典型的反應機構;參考文獻[31] 22
圖2-1 製備聚亞醯胺實驗流程圖 37
圖2-2 製備聚亞醯胺化學結構示意圖 38
圖2-3 製備聚亞醯胺/奈米二氧化矽混成光學薄膜實驗流程圖 39
圖2-4 製備聚亞醯胺/奈米二氧化矽混成光學薄膜化學結構示意圖 40
圖2-5 製備Colloidal silica-Titanium dioxide混成先驅溶液實驗流程圖 41
圖2-6 製備聚亞醯胺/Silica-Titanium dioxide混成光學薄膜實驗流程圖 42
圖2-7 製備聚亞醯胺/Silica-Titanium dioxide混成光學薄膜化學結構示意圖 43
圖3-1 PS0~PS50混成薄膜之FTIR光譜圖 52
圖3-2 PS0~PS50混成薄膜之TGA曲線圖 53
圖3-3 PS0~PS50混成薄膜之DSC曲線圖 54
圖3-4 PS0混成塗佈液之放大六萬倍TEM圖 55
圖3-5 PS10混成塗佈液之放大六萬倍TEM圖 55
圖3-6 PS20混成塗佈液之放大六萬倍TEM圖 56
圖3-7 PS30混成塗佈液之放大六萬倍TEM圖 56
圖3-8 PS40混成塗佈液之放大六萬倍TEM圖 57
圖3-9 PS50混成塗佈液之放大六萬倍TEM圖 57
圖3-10 PS0混成薄膜經固化後放大五萬倍之SEM圖 58
圖3-11 PS10混成薄膜經固化後放大五萬倍之SEM圖 58
圖3-12 PS20混成薄膜經固化後放大五萬倍之SEM圖 59
圖3-13 PS30混成薄膜經固化後放大五萬倍之SEM圖 59
圖3-14 PS40混成薄膜經固化後放大五萬倍之SEM圖 60
圖3-15 PS50混成薄膜經固化後放大五萬倍之SEM圖 60
圖3-16 混成膜PS0之AFM-2D圖 61
圖3-17 混成膜PS0之AFM-3D圖 61
圖3-18 混成膜PS10之AFM-2D圖 61
圖3-19 混成膜PS10之AFM-3D圖 61
圖3-20 混成膜PS20之AFM-2D圖 61
圖3-21 混成膜PS20之AFM-3D圖 61
圖3-22 混成膜PS30之AFM-2D圖 62
圖3-23 混成膜PS30之AFM-3D圖 62
圖3-24 混成膜PS40之AFM-2D圖 62
圖3-25 混成膜PS40之AFM-3D圖 62
圖3-26 混成膜PS50之AFM-2D圖 62
圖3-27 混成膜PS50之AFM-3D圖 62
圖3-28 PS0~PS50混成薄膜之UV光譜圖 63
圖3-29 PS0~PS50混成膜之n&k曲線圖 64
圖3-30 PS0~PS50混成膜折射率(633nm)隨Silica含量變化與阿貝數關係圖 65
圖4-1 PST0~PST50混成薄膜之FTIR光譜圖 77
圖4-2 PST0~PST50混成薄膜於氮氣下TGA曲線圖 78
圖4-3 PST0~PST50混成薄膜於空氣下TGA曲線圖 79
圖4-4 PST10~PST50混成薄膜之DSC曲線圖 80
圖4-5 PST0混成粉末之放大十萬倍TEM圖 81
圖4-6 PST10混成粉末之放大十萬倍TEM圖 81
圖4-7 PST20混成粉末之放大十萬倍TEM圖 82
圖4-8 PST30混成粉末之放大十萬倍TEM圖 82
圖4-9 PST40混成粉末之放大十萬倍TEM圖 83
圖4-10 PST50混成粉末之放大十萬倍TEM圖 83
圖4-11 PST100混成粉末之放大十萬倍TEM圖 84
圖4-12 Pure TiO2粉末之放大十萬倍TEM圖 84
圖4-13 PST0混成薄膜經固化後放大五萬倍之SEM圖 85
圖4-14 PST10混成薄膜經固化後放大五萬倍之SEM圖 85
圖4-15 PST20混成薄膜經固化後放大五萬倍之SEM圖 86
圖4-16 PST30混成薄膜經固化後放大五萬倍之SEM圖 86
圖4-17 PST40混成薄膜經固化後放大五萬倍之SEM圖 87
圖4-18 PST50混成薄膜經固化後放大五萬倍之SEM圖 87
圖4-19 Pure silica經固化後放大二十萬倍之SEM圖 88
圖4-20 Pure silica/titanium dioxide經固化後放大二十萬倍之SEM圖 88
圖4-21 混成膜PST0之AFM-2D圖 89
圖4-22 混成膜PST0之AFM-3D圖 89
圖4-23 混成膜PST10之AFM-2D圖 89
圖4-24 混成膜PST10之AFM-3D圖 89
圖4-25 混成膜PST20之AFM-2D圖 89
圖4-26 混成膜PST20之AFM-3D圖 89
圖4-27 混成膜PST30之AFM-2D圖 90
圖4-28 混成膜PST30之AFM-3D圖 90
圖4-29 混成膜PST40之AFM-2D圖 90
圖4-30 混成膜PST40之AFM-3D圖 90
圖4-31 混成膜PST50之AFM-2D圖 90
圖4-32 混成膜PST50之AFM-3D圖 90
圖4-33 PST0~PST50混成薄膜之UV光譜圖 91
圖4-34 PST10~PST50混成薄膜之n&k曲線圖 92
圖4-35 PST0~PST50混成膜折射率(633nm)隨奈米複合物含量變化與阿貝數關係圖 93
圖4-36 複合奈米粒子之剪切速率對黏度關係示意圖 94
圖4-37 複合奈米粒子之拉曼光譜圖 95
圖4-38 PST0~PST50混成薄膜之拉曼光譜圖 96
圖4-39 PST10~PST50及二氧化矽與複合奈米粒子粉體之XRD繞射圖 97
圖4-40 PST10~PST50及二氧化矽與複合奈米粒子粉體之XRD繞射圖 98
圖5-1 Polyimide-silica/titanium dioxide混成先驅溶液實驗流程圖 106
圖5-2 Polyimide/titanium dioxide混成先驅溶液實驗流程圖 106
圖5-3 Polyimide/titanium dioxide化學結構圖 107
圖5-4 製備三層抗反射薄膜於玻璃基板實驗流程圖 108
圖5-5 塗佈於玻璃基板各膜層之n&k曲線圖 109
圖5-6 於玻璃基板抗反射薄膜模擬與實際量測的反射率圖 110
圖5-7 於玻璃基板三層抗反射薄膜UV穿透圖 111
圖5-8 製備三層抗反射薄膜於PMMA基板實驗流程圖 112
圖5-9 塗佈於PMMA基板各膜層之n&k曲線圖 113
圖5-10 於PMMA基板抗反射薄膜模擬與實際量測之反射圖 114
圖5-11 於PMMA基板三層抗反射薄膜UV穿透圖 115
1-4 參考文獻
[1] Y. Huang, Y. Gu, “New polyimide-silica organic-inorganic hybrids”, Journal of Applied Polymer Science, 88 (9) 2210-2214 (2003).
[2] Q. Deng, R. B. Moore, K. A. Mauritz, “Novel Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy”, Chemistry of Materials, 7 (12) 2259-2268 (1995).
[3] P. Judeinstenin, C. Sanchez, “Hybrid organic-inorganic materials: a land of multidisciplinarity”, Journal of Materials Chemistry, 6 (4) 511-525 (1996).
[4] W. Jianye, L. W. Garth, “Organic/Inorganic hybrid network materials by the Sol-Gel approach”, Chemistry of Materials, 8 (8) 1667-1681 (1996).
[5] Y. Chujo, E. Ihara, S. Kure, N. Suzuki and T. Saegusa, “Block copolymer of 2-methyl-2-oxazoline with silica gel. An organic-inorganic hybrid polymer”, Makromol. Chem. Macromol. Symp., 42/43, 303-312(1991).
[6] L. Mascia, A. Kioul, “Influence of siloxane composition and morphology on properties of polyimide-silica hybrids”, Polymer, 36 (19) 3649-3659 (1995).
[7] M. A. Harmer, W. E. Farneth, Q. Sun, “High Surface Area Nafion Resin/Silica Nanocomposites: A New Class of Solid Acid Catalyst”, Journal of the American Chemical Society. 118 (33) 7708-7715 (1996).
[8] R. Tamki, K. Naka, Y. Chujo, “Synthesis of polystyrene/silica gel polymer hybrids by in-situ polymerization method”, Polymer Bulletin, 39 (3) 303-310 (1997).
[9] Y. Imai, N. Yoshida, K. Naka, Y. Chujo, “Thermoresponsive Organic-Inorganic Polymer Hybrids from Poly(N-isopropylacrylamide)”, Polymer Journal, 31 (3) 258-262 (1999).
[10] M. T. Bogert, R. R. Renshaw, “4-AMINO-0-PHTHALIC ACID AND Some OF ITS DERIVATIVES”, Journal of the American Chemical Society, 30 (7) 1135-1144 (1908).
[11] C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L. Olivier, “Aromatic polypyromellitimides from aromatic polyamic acids ”, Journal of Polymer Science Part A: Polymer Chemistry, 3 (4) 1373-1390 (1965).
[12] A. L. Endrey, Parma, Ohio, “Process for preparing by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides”, U.S. patent., 3179630 (1965).
[13] 林金雀, 聚酰亚胺薄膜全球市场及应用现况, 化工資訊月刊, Vol.13, No.7 58-62 (1999).
[14] S. A-C. Zahir, A. Renner, “Process for the manufacture of crosslinked polymers which contain imide groups”, U.S. Patent, 4100140 (1978).
[15] H. H. Huang, G. L. Willkes, “Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide)”, Polymer, 30 (11) 2001-2012 (1989).
[16] N. A. Adrova, M. I. Bessonov, L. A. Laius, A. P. Rudakov, “Polyimide: A new class of thermally stable polymers”, Stamford, Conn., Technomic (1970)
[17] R. A. Dine-Hart, W. W. Wright, “Preparation and fabrication of aromatic polyimides,” Journal of Applied Polymer Science, 11 (5) 609-627, (1967).
[18] Y. J. Kim, T. E. Glass, G. D. Lyle, J. E. Mcgrath, “Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions”, Macromolecules, 26 (6) 1344-1358 (1993).
[19] T. M. Moy, C. D. Deporter, J. E. Mcgrath, “Synthesis of soluble polyimides and functionalized imide oligomers via solution imidization of aromatic diester-diacids and aromatic diamines”, Polymer, 34 (4) 819-824 (1993).
[20] A. G. Cramer, “DOOR SADDLE OR SILL”, U.S. Patent. 317630.
[21] T. A. Edison, “INCANDESCENT ELECTRIC LAMP”, U.S. Patent. 317631.
[22] T. A. Edison, “INCANDESCENT ELECTRIC LAMP”, U.S. Patent. 317632.
[23] B. Munro, P. Conrad, S. Kramer, H. Schmidt, “Development of electrochromic cells by the sol-gel process”, Solar Energy Materials and Solar Cells, 54 (1-4) 131-137 (1998).
[24] H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandte Chemie International Edition, 10 (6) 363-370 (1971).
[25] C. J. Brinker; G. W. Scherer, “Sol-Gel-Science”, Boston: Academic Press, Chap 3.
[26] R. Aelion, A. Loebel, F. Eirich, “Hydrolysis of Ethyl Silicate”, Journal of the American Chemical Society, 72 (12) 5705-5712 (1950).
[27] F. Fehér, H. J. Berthold, “Beiträge zur Chemie des Schwefels. XIV. Über das System Natrium-Schwefel”, Zeitschrift für anorganische und allgemeine Chemie, 273(3-5), 144-160 (1953).
[28] Y. Wei, J. M. Yeh, D. Jin, X. Jia, J. Wang, G. W. Jang, C. Chen, R. W. Gumbs, “Composites of Electronically Conductive Polyaniline with Polyacrylate-Silica Hybrid Sol-Gel Materials”, Chemistry of Materials, 7 (5) 969-974 (1995).
[29] A. Morikawa, Y. Iyoku, M. Kamimoto, Y. Imai, “Preparation of a New Class of Polyimide-Silica Hybrid Films by Sol-Gel Process”, Polymer Journal, 24 (1) 107-103 (1992).
[30] Y. Charlier, J. L. Hedrick, T. P. Russell, A. Jonas, W. Volksen, “High temperature polymer nanofoams based on amorphous, high Tg polyimides”, Polymer, 36 (5) (1995) 987-1002.
[31] Z. Ahmad, J. E. Mark, “Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route”, Chemistry of Materials, 13 (10) 3320-3330 (2001).
[32] K. Yano, A. Usuki, A. Okada, “Synthesis and properties of polyimide-clay hybrid films”, Journal of Polymer Science Part A: Polymer Chemistry, 35 (11) (1997) 2289-2294.
[33] 丁孟贤, 何天白, 聚酰亚胺新型材料, 北京:科學出版社(1998).
[34] D. W. van Krevelen, “Properties of Polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions”, 3rd ed.,Amsterdam: Elsevier, Chap 10, pp.287, (1990).
[35] D. E. Bornside, C. W. Macosko, L. E. Scriven, “Spin coating: One-dimensional model”, Journal of Applied Physics, 66 (11) 5185-5194 (1989).
[36] C. C. Chang, W. C. Chen, “Synthesis and optical Properties of Polyimide-Silica Hybrid Thin Films”, Chemistry of Materials, 14 (10) 4242-4248 (2002).
[37] L. Liu, Q. Lu, J. Yin, Z. Zhu, D. Pan, Z. Wang, “Preparation and properties of photosensitive polyimide/titania-silica hybrid materials”, Materials Science and Engineering:C, 22 (1) 61-65 (2002).
[38] H. Wang, W. Zhong, P. Xu, Q. Du, “Polyimide/silica/titania nanohybrids via a novel non-hydrolytic sol-gel route”, Composites Part A: Applied Science and Manufacturing, 36 (7) 909-914 (2005).
[39] P. C. Chiang, W. T. Whang, M. H. Tsai, S. C. Wu, “Physical and mechanical properties of polyimide/titania hybrid films”, Thin Solid Films, 447-448 359-364 (2004).
[40] S. Wang, Z. Ahmad, J. E. Mark, “Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane”, Chemistry of Materials, 6 (7) 943-946 (1994).
[41] 邱致銘, “可溶性聚醯亞胺/二氧化矽奈米複合材料之合成與性質研究”, 國立成功大學化學工程研究所,碩士學位論文, (2003).
[42] L. B. Lockhart, P. King, “Three layered reflection reducing coatings”, Journal of the optical society of america, 37 (9) 689-694 (1947).
[43] R. A. Gaiser, “Multilayer low light reflecting film”, U.S. Patent., 2478385 (1949).
[44] A. J. Thelen, “Three layer anti-reflection coating”, U.S. Patent., 3185020 (1965).

3-1-6 參考文獻
[1] C. C. Chang, W. C. Chen, “Synthesis and optical Properties of Polyimide-Silica Hybrid Thin Films”, Chemistry of Materials, 14 (10) 4242-4248 (2002).
[2] Y. Y. Yu, C. Y. Chen, W. C. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica”, Polymer, 44 (3) 593-601 (2003).
[3] H. S. Li, J. G. Liu, J. M. Rui, L. Fan, S. Y. Yang, “Synthesis and characterization of Novel Fluorinated Aromatic Polyimides Derived from 1,1-Bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and Various Aromatic Dianhydrides”, Journal of polymer science part A:polymer chemistry, 44 (8) 2665-2674 (2006).
[4] C. J. Cornelius, E. Marand, “Hybrid inorganic-organic materials based on a 6FDA-6FpDA-DABA polyimide and silica: physical characterization studies”, Polymer, 43 (8) 2385-2400 (2002).
[5] M. S. Boroglu, I. Boz, M. A. Gurkaynak, “Structural characterization of silica modified polyimide membranes”, Polymers for advanced technologies, 17 (1) 6-11 (2006).
[6] L. Mascia, A. Kioul, “Influence of siloxane composition and morphology on properties of polyimide-silica hybrids”, Polymer, 36 (19) 3649-3659 (1995).
[7] M. A. Harmer, W. E. Farneth, Q. Sun, “High Surface Area Nafion Resin/Silica Nanocomposites: A New Class of Solid Acid Catalyst”, Journal of the American Chemical Society, 118 (33) 7708-7715 (1996).
[8] P. R. Young, A. C. Chang, “Characterization of a thermally imidized soluble polyimide film’, Journal of Polymer Science Part A: Polymer Chemistry, 28 (11) 3107-3122 (1990).
[9] S. Wang, Z. Ahmad, J. E. Mark, “Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane”, Chemistry of Materials, 6 (7) 943-946 (1994).
[10] L. Mascia, A. Kioul, “Influence of siloxane composition and Morphology on properties of polyimide-silica hybrids”, Polymer, 36 (19) 3649-3659 (1995).
[11] X. Y. Shang, Z. K. Zhu, “Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent”, Chemistry of Materials, 14 (1) 71-77 (2002).
[12] J. H. Lee, J. S. Im, K. W. Song, J. O. Lee, K. Yoshinaga, “Preparation of polyimide/silica hybrid composites based on polymer-modified silica gel”, Journal of Macromolecular Science Pure and Applied Chemistry, 41 (11) 1345-1357 (2004).
[13] S. Karatas, N. Kayaman-Apohan, H. Demirer, A. Güngör, “Polyimide-silica hybrid coatings: morphological, mechanical, and thermal investigations”, Polymers for advanced technologies, 18 (6) 490-496 (2007).
[14] T. C. Chang, G. P. Wang, H. C. Tsai, Y. S. Hong, Y. S. Chiu, “Organic-inorganic hybrid materials x: characterization and degradation of hydroxyl-containing fluorinated polyimide-silica hybrids”, International Journal of Polymer Analysis and Characterization, 8 (3) 157-174 (2003).
[15] S. Rimdusit, W. Benjapan, S. Assabumrungrat, T. Takeichi, R. Yokota, “Surface Segregation of Siloxane Containing Component in Polysiloxane-Block-Polyimide and s-BPDA/ODA Polyimide Blends”, Polymer engineering & science, 47 (4) 489-498 (2007).
[16] Z. Shang , C. Lü , X. Lü , L. Gao, “Studies on syntheses and properties of novel CeO2/polyimide nanocomposite films from Ce(Phen)3 complex”, Polymer, 48 (14) 4041-4046 (2007).
[17] D. Yin, Y. Li, H. Yang, S. Yang, L. Fan, J. Liu, “Synthesis and characterization of novel polyimides derived from1,1-bis[4-(4′-aminophenoxy)phenyl]-1-[3",5"-bis(trifluoromethyl)phenyl]-2,2,2-trifluoroethane”, Polymer, 46 (9) 3119-3127 (2005).
[18] H. W. Su, W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials”, Journal of Materials Chemistry, 18 (10) 1139-1145 (2008).
[19] A. A. Belhekar, S. V. Awate, R. Anand, “Photocatalytic activity of titania modified mesoporous silica for pollution control”, Catalysis Communications, 3 (10) 453-458 (2002).
[20] W. Qiu, Y. Luo, F. Chen, Y. Duo, H. Tan, “Morphology and size control of inorganic particles in polyimide hybrids by using SiO2–TiO2 mixed oxide”, Polymer, 44 (19) 5821–5826 (2003).
[21] X. A. Fu, S. Qutubuddin, “Preparation and Characterization of Titania Nanocoating on Monodisperse Silica Particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 186 (3) 245-250 (2001).
[22] J. Qin, H. Zhao, X. Liu, X. Zhang, Y. Gu, “Double phase separation in preparing polyimide/silica hybrid films by sol-gel method”, Polymer, 48 (12) 3379-3383 (2007).
[23] Y. Tian, S. Liu, H. Ding, L. Wang, B. Liu, Y. Shi, “Formation of deformed honeycomb-patterned films from fluorinated polyimide”, Polymer, 48 (8) 2338-2344 (2007).
[24] T. L. Li, S. L. C. Hsu, “Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate”, European Polymer Journal, 43 (8) 3368-3373 (2007).
[25] C. P. Yang, F. Z. Hsiao, C. Y. Tsai, G. S. Liou, “Synthesis and Properties of Fluorinated Polyimides Based on 1,4-Bis(4-amino-2-trifluoromethylphenoxy)-2,5-di-tert-butylbenzene and Various Aromatic Dianhydrides”, Journal of Polymer Science Part A: Polymer Chemistry, 42 (9) 2272-2284 (2004).

4-1-6 參考文獻
[1] C. C. Chang, W. C. Chen, “Synthesis and optical Properties of Polyimide-Silica Hybrid Thin Films”, Chemistry of Materials, 14 (10) 4242-4248 (2002).
[2] Y. Y. Yu, C. Y. Chen, W. C. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica”, Polymer, 44 (3) 593-601 (2003).
[3] H. S. Li, J. G. Liu, J. M. Rui, L. Fan, S. Y. Yang, “Synthesis and characterization of Novel Fluorinated Aromatic Polyimides Derived from 1,1-Bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and Various Aromatic Dianhydrides”, Journal of polymer science part A:polymer chemistry, 44 (8) 2665-2674 (2006).
[4] S. T. Hwang, Y. B. Hahn, K. S. Nahm, Y. S. Lee, “Preparation and characterization of poly(MSMA-co-MMA)-TiO2/SiO2 nanocomposites using the colloidal TiO2/SiO2 particles via blending method”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 259 (1-3) 63-69 (2005).
[5] J. C. Cornelius, E. Marand, “Hybrid inorganic-organic materials based on a 6FDA-6FpDA-DABA polyimide and silica: physical characterization studies“, Polymer, 43 (8) 2385-2400 (2002).
[6] M. S. Boroglu, I. Boz, M. A. Gurkaynak, “Structural characterization of silica modified polyimide membranes”, Polymers for advanced technologies, 17 (1) 6-11 (2006).
[7] 姚红军, 郑志坚, 何阿弟, “Study on the Electro-catalytic Degradation of Nitro-phenol by Ti/SnO2-Sb2O5 Electrode”, 复旦学报(自然科学版), 44(4), 614-618 (2005)
[8] 王君, 韩建涛, 张向东, 郭宝东, 刘振荣, 李绮, 康平利, 李红, “Study on ultrasonic degradation of methyl orange in presence of Sb2O5 doping TiO2 catalyst”, 安全与环境学报, 4(6), 27-29 (2004).
[9] H. B. Lin, Z. Q. Sun, H. B. Zhang, B. Zhao, “Study on the Oxidation of Solutions of Aniline and Phenol on Ti/SnO2-Sb2O5 Electrode by UV-Vis Spectroscopy and HPLC”, Spectroscopy and Spectral Analysis, 26(6) pp.1141-1144.
[10] G. Chen, X. Chen, P. L. Yue, “Electrochemical Behavior of Novel Ti/IrOx-Sb2O5-SnO2 Anodes”, Journal of Physical Chemistry B, 106 (17) 4364-4369 (2002).
[11] X. Chen, G. Chen, P. L. Yue, “Stable Ti/IrOx-Sb2O5-SnO2 Anode for O2 Evolution with Low Ir Content”, Journal of Physical Chemistry B, 105 (20) 4623–4628 (2001).
[12] H. Wang, W. Zhong, P. Xu, Q. Du, “Polyimide/silica/titania nanohybrids via a novel non-hydrolytic sol-gel route”, Composites Part A: Applied Science and Manufacturing, 36 (7) 909-914 (2005).
[13] S. Karatas, N. Kayaman-Apohan, H. Demirer, A. Gungor, “Polyimide-silica hybrid coatings: morphological, mechanical, and thermal investigations”, Polymers for advanced technologies, 18 (6) 490-496 (2007).
[14] S. Rimdusit, W. Benjapan, S. Assabumrungrat, T. Takeichi, R. Yokota, “Surface Segregation of Siloxane Containing Component in Polysiloxane-Block-Polyimide and s-BPDA/ODA Polyimide Blends”, Polymer engineering & science, 47 (4) 489-498 (2007).
[15] Z. Shang, C. Lü, X. Lü, L. Gao, “Studies on syntheses and properties of novel CeO2/polyimide nanocomposite films from Ce(Phen)3 complex”, Polymer, 48 (14) 4041-4046 (2007).
[16] D. Yin, Y. Li, H. Yang, S. Yang, L. Fan, J. Liu, “Synthesis characterization of novel polyimides derived from 1,1-bis[4-(4’-aminophenoxy)phenyl]-1-[3",5"-bis(trifluoromethyl)phenyl]-2,2,2-trifluoroethane”, Polymer, 46 (9) 3119-3127 (2005).
[17] Y. Kotani, A. Matsuda, M. Tatsumisago, T. Minami, “Formation of Anatase Nanocrystals in Sol-Gel Derived TiO2-SiO2 Thin Films with Hot Water Treatment”, Journal of Sol-Gel Science and Technology, 19(1-3) 585-588 (2000).
[18] H. W. Su, W. C. Chen, “High refractive index polyimide–nanocrystalline-titania hybrid optical materials”, Journal of Materials Chemistry, 18 (10) 1139-1145 (2008).
[19] A. A. Belhekar , S. V. Awate , R. Anand, “Photocatalytic activity of titania modified mesoporous silica for pollution control”, Catalysis Communications, 3 (10) 453-458 (2002).
[20] W. Qiu, Y. Luo, F. Chen, Y. Duo, H. Tan, “Morphology and size control of inorganic particles in polyimide hybrids by using SiO2-TiO2 mixed oxide”, Polymer, 44 (19) 5821-5826 (2003).
[21] X. A. Fu, S. Qutubuddin, “Preparation and Characterization of Titania Nanocoating on Monodisperse Silica Particles” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 186 (3) 245-250 (2001).
[22] J. Qin, H. Zhao, X. Liu, X. Zhang, Y. Gu, “Double phase separation in preparing polyimide/silica hybrid films by sol-gel method”, Polymer, 48 (12) 3379-3383 (2007).
[23] Y. Tian, S. Liu, H. Ding, L. Wang, B. Liu, Y. Shi, “Formation of deformed honeycomb-patterned films from fluorinated polyimide”, Polymer, 48 (8) 2338-2344 (2007).
[24] T. L. Li, S. L. C. Hsu, “Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate”, European Polymer Journal, 43 (8) 3368-3373 (2007).
[25] 廖為盛, “奈米鈦酸鋇有機懸浮液分散性質之研究”, 國立台北科技大學材 料科學與工程研究所,碩士學位論文, (2008).
[26] U. Balachandran, N. G. Eror, “Raman Spectra of Titanium Dioxide”, Journal of solid state chemistry, 42 (3) 276-282 (1982).

5-6 參考文獻
[1] L. B. Lockhart, P. King, “Three layered reflection reducing coatings”, Journal of the optical society of america, 37 (9) 689-694 (1947).
[2] R. A. Gaiser, “Multilayer low light reflecting film”, U.S. Patent., 2478385 (1949).
[3] A. J. Thelen, “Three layer anti-reflection coating”, U.S. Patent., 3185020 (1965).
[4] H. W. Su, W. C. Chen, “High refractive index polyimide–nanocrystalline-titania hybrid optical materials”, Journal of Materials Chemistry, 18 (10) 1139-1145 (2008).
[5] 李正中, "薄膜光學與鍍膜技術", 五版,台北:藝軒出版社, (2006).
[6] 林志雄, “使用反應濺鍍法於塑膠基板上製鍍抗反射膜之研究”, 國立中央大學光電科學與工程學系, 碩士學位論文, (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔