(34.239.150.57) 您好!臺灣時間:2021/04/14 23:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭翔懌
研究生(外文):Shiao,Shiang-Yi
論文名稱:比較不同晶型錳氧化物對三價砷及五價砷去除特性之研究
論文名稱(外文):Effects of manganese oxides with various mineral forms on the removal of As(III) and As(V) from water
指導教授:官文惠官文惠引用關係
指導教授(外文):Kuan,Wen-Hui
學位類別:碩士
校院名稱:明志科技大學
系所名稱:生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:112
中文關鍵詞:砷酸鹽(五價砷)亞砷酸鹽(三價砷)錳氧化物氧化吸附
外文關鍵詞:arsenatesarsenitemanganese oxideoxidationadsorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
砷之毒性極強可能致癌。根據學者調查指出台灣西南沿海及東北地區地下水中,砷濃度高達10~1800μg/L間。本研究利用錳氧化物的氧化與吸附能力,先將水中之三價砷氧化為五價砷,然後將其吸附,實驗主要以Pyrolusite錳氧化物對三價砷及五價砷進行批次實驗,最後再以自行合成之層狀結構的Birnessite與隧道狀結構的Todorokite來進行比較不同晶型之錳氧化物進行比較,污染物主要以亞砷酸鈉及砷酸鈉配製而成,本研究針對錳氧化物之基本性質、吸附動力實驗與批次實驗分析,實驗操作變因包括反應時間、反應濃度、pH值與反應溫度等,最後經由感應耦合電漿來分析錳氧化錳對三價砷與五價砷去除效率之變化。在基本性質分析中以X光繞射光譜儀與穿透式電子顯微鏡分析錳氧化物之結構;由實驗結果發現,大部分反應在1分鐘之內就已經達成,而大約在10 分鐘左右整體反應已經趨近於平衡;Pyrolusite錳氧化物對於三價砷與五價砷的吸附能力分別為7.61 mg/g 與4.19 mg/g,且在酸性環境pH2左右可以達到最好之處理效果,但在酸性環境之情形下易使錳離子釋出。在反應溫度方面,隨著反應溫度上升,Pyrolusite錳氧化物對於三價砷之去除效率越好,但在五價砷部分影響並不大。另外,三價砷與Pyrolusite錳氧化物反應後,水溶液中尚未被去除之三價砷亦受錳氧化物氧化為五價砷。最後比較三種不同晶型結構之錳氧化物對於三價砷與五價砷之去除效率,實驗結果發現,Pyrolusite錳氧化物在酸性環境下對於分別三價砷與五價砷之去除效率可以達到91.9%與86.8%最好的效果。
Arsenic is a strong toxic element and known to induce deletion mutation and chromosomal alteration. The arsenic concentration in groundwater along the south western and north eastern coasts of Taiwan runges from 10μg/L up to 1800μg/L. Manganese oxides served as the oxidant and adsorbent in this study. The experiment mainly focus on the batch test of As uptake by commercial pyrolusite, and then self-synthesis different structures of manganese oxides, iduding birnessite, layering structure and todorokite, tunnel structure. Finally, three manganese oxides were compared for the capability of As removal. The As removal were studied in terms of reaction time, reaction concentration, pH values and reaction temperatures. The As concentration in solution was analyzed by inductively coupled plasma atomic emission spectrometry, ICP, the synthesized MnO2 were characterized by X-Ray Diffractometer (XRD) and Tranmission Electron Microscope (TEM). As a result, most reactions complete within one minute and approach to pseodo-steady state within around ten minutes. The maximum capacity of pyrolusite to As(III) and As(V) are 7.61 mg/g and 4.19 mg/g, respectively. The acidic conditions enhance As diminishing, however, these conditions may cause liberation of manganese ions. The increasing temperature enhances As(III) removal by pyrolusite but not for As(V). As(III) was removed through firstly oxidized to As(V) then adsorbed ento the surface of pyrolusite. These mechanisms could be proved by the fact of As(III) dominating the As speciation in solution after reactions. Of the three manganese oxides, the pyrolusite has the maximum removal efficiencies of 91.9% and 86.8% for As(III) and As(V), respectively.
目 錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
中文摘要 v
英文摘要 vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的及內容 2
第二章 文獻回顧 3
2-1砷的來源、特性及毒性 3
2-1-1砷的來源 3
2-1-2砷的特性 4
2-1-3砷的毒性 7
2-1-4台灣地區自然水體中之砷 8
2-2水中砷之處理方法 9
2-2-1混凝沉澱法 9
2-2-2薄膜過濾法 10
2-2-3電化學法 12
2-2-4離子交換法 13
2-2-5吸附法 14
2-3三價砷之氧化方法 15
2-3-1均相氧化劑 15
2-3-2高級氧化法 15
2-3-3電化學過氧化法 15
2-3-4錳氧化物 16
2-4吸附理論 17
2-4-1吸附基本理論 17
2-4-2吸附能力之影響因子 19
2-5錳氧化物 21
2-5-1錳之來源 21
2-5-2錳氧化物之種類與構造 22
2-5-3錳氧化物之化學性質 25
2-5-4錳之水化特性 25
2-5-5錳之物理特性 27
2-5-6錳氧化物之合成 28
2-6不同水質條件對砷之氧化還原反應與吸附影響 29
2-6-1水中其他溶解性陽離子 29
2-6-2水中其他溶解性陰離子 29
第三章 材料與方法 31
3-1研究流程 32
3-2實驗方法 33
3-2-1錳氧化物合成與製備 33
3-2-2錳氧化物之基本性質分析 34
3-2-3吸附動力實驗 35
3-2-4等溫吸附實驗 35
3-2-5批次實驗 35
3-2-6物種轉換之實驗 36
3-2-7錳氧化物表面分析之實驗 36
3-2-8不同錳氧化物比較 36
3-3實驗材料與設備 38
3-3-1實驗之藥品 38
3-3-2溶液配製 40
3-3-3實驗設備與材料 41
3-3-4分析儀器與原理 43
3-4檢量線製作 56
第四章 結果與討論 59
4-1錳氧化物之基本性質分析 59
4-1-1晶相結構分析 59
4-1-2晶體結構分析 62
4-1-3 Zate電位與粒徑分佈 67
4-1-4 比表面積 71
4-2動力吸附實驗 72
4-3等溫吸附實驗 75
4-3-1等溫吸附模式 76
4-4批次實驗 80
4-4-1 pH值對錳氧化物處理水中砷之影響 80
4-4-1-1移除率之影響 80
4-4-1-2錳溶出之影響 82
4-4-2反應溫度對錳氧化物處理水中砷之影響 84
4-5三價砷之氧化 86
4-5-1物種轉換 86
4-6錳氧化物表面分析之實驗 88
4-6-1 FT-IR分析 88
4-6-2 XRD分析 90
4-7不同錳氧化物比較 92
4-7-1 Zeta電位 92
4-7-2粒徑分佈 93
4-7-3去除效率 94
4-7-4錳溶出率 99
4-7-5三價砷之氧化 101
第五章 結論與建議 104
5-1結論 104
5-2建議 105
第六章 參考文獻 106

表目錄
表2-1台灣各岩層中之砷含量 4
表2-2 物理吸附與化學吸附之特性差異 18
表2-3 錳氧化物與氫氧化物 24
表2-4 錳之物理特性 27
表3-1 三價砷檢量線各濃度之積分面積 57
表3-2 五價砷檢量線各濃度之積分面積 58
表4-1 錳氧化物之BET分析 71
表4-2 As(III)與As(V)知Qm、KL、Kf、n值 78

圖目錄
圖2-1 砷在不同的pH值與氧化還原電位(Eh)下的物種變化 5
圖2-2 砷在不同的pH 值所含的物種百分率 6
圖2-3 滲透現象示意圖 11
圖2-4 滲透平衡示意圖 11
圖2-5 逆滲透現象示意圖 11
圖2-6 電解混凝法反應機制 13
圖2-7 鈉水錳礦之層狀結構 23
圖2-8 軟錳礦之隧道結構 23
圖2-9 錳隨pH-Eh變化之物種分佈 26
圖3-1 研究架構流程圖 32
圖3-2 晶體產生X-射線繞射之條件示意圖 45
圖3-3 X光繞射光譜儀(XRD) 45
圖3-4 界面電位量測原理 47
圖3-5 界達電位分析儀 48
圖3-6 BET原理適用範圍示意圖 50
圖3-7 不同相對壓力範圍與孔洞結構之關係圖 50
圖3-8 比表面積分析儀(BET) 51
圖3-9 ICP裝置示意圖 53
圖3-10 感應耦合電漿原子發射光譜分析儀(ICP) 54
圖3-11 流動注入式氫化裝置(FIAS) 55
圖3-12 三價砷之檢量線 57
圖3-13 五價砷之檢量線 58
圖4-1 Pyrolusite錳氧化物與JCPDS資料庫比對圖 60
圖4-2 Birnessite錳氧化物與JCPDS資料庫比對圖 60
圖4-3 Todorokite錳氧化物與JCPDS資料庫比對圖 61
圖4-4 Pyrolusite錳氧化物之電子顯微鏡照片(40K) 63
圖4-5 Pyrolusite錳氧化物之選擇區域電子繞射圖 63
圖4-6 Birnessite錳氧化物之電子顯微鏡照片(40K) 64
圖4-7 Birnessite錳氧化物之選擇區域電子繞射圖 64
圖4-8 Todorokite錳氧化物之電子顯微鏡照片(40K) 65
圖4-9 Todorokite錳氧化物之電子顯微鏡照片(20K) 65
圖4-10 Todorokite錳氧化物之選擇區域電子繞射圖 66
圖4-11 Pyrolusite錳氧化物之表面電位圖 68
圖4-12 Pyrolusite錳氧化物之粒徑分佈圖 69
圖4-13 Pyrolusite錳氧化物與As(III)反應後之粒徑分佈圖 69
圖4-14 Pyrolusite錳氧化物與As(V)反應後之粒徑分佈圖 70
圖4-15 Pyrolusite錳氧化物與As(III)、(V)反應前後之平均粒徑比較 70
圖4-16 Pyrolusite錳氧化物去除三價砷之動力曲線 72
圖4-17 Pyrolusite錳氧化物去除五價砷之動力曲線 73
圖4-18 Pyrolusite錳氧化物去除三價砷與五價砷之動力曲線比較 74
圖4-19 Pyrolusite錳氧化物之吸附能力 75
圖4-20 Pyrolusite錳氧化物吸附能力之Langmuir equation作圖 77
圖4-21 Pyrolusite錳氧化物吸附能力之Freundlich equation作圖 77
圖4-22 As(III)之實驗值與模擬Langmuir與Freundlich等溫線比較 79
圖4-23 As(V)之實驗值與模擬Langmuir與Freundlich等溫線比較 79
圖4-24 pH值對Pyrolusite錳氧化物去除三價砷之影響 81
圖4-25 pH值對Pyrolusite錳氧化物去除五價砷之影響 81
圖4-26 pH值對Pyrolusite錳氧化物溶出影響之背景值 83
圖4-27 pH值對Pyrolusite錳氧化物溶出之影響 83
圖4-28 反應溫度對Pyrolusite錳氧化物去除三價砷之影響 85
圖4-29 反應溫度對Pyrolusite錳氧化物去除五價砷之影響 85
圖4-30 三價砷氧化/吸附之動力曲線圖 87
圖4-31 Pyrolusite錳氧化物與同濃度As(III)反應後之FT-IR圖譜 89
圖4-32 Pyrolusite錳氧化物與不同濃度As(V)反應後之FT-IR圖譜 89
圖4-33 Pyrolusite錳氧化物與不同濃度As(III)反應前後之XRD圖譜 91
圖4-34 Pyrolusite錳氧化物與不同濃度As(V)反應前後之XRD圖譜 91
圖4-35 不同錳氧化物之表面電位圖 92
圖4-36 不同錳氧化物之平均粒徑分布圖 93
圖4-37 不同錳氧化物去除As(III)之比較 94
圖4-38 不同錳氧化物去除As(V)之比較 95
圖4-39 Pyrolusite錳氧化物去除As(III)、(V)之比較 97
圖4-40 Birnessite錳氧化物去除As(III)、(V)之比較 97
圖4-41 Todorokite錳氧化物去除As(III)、(V)之比較 98
圖4-42 不同錳氧化物與As(III)反應之錳溶出比較 100
圖4-43 不同錳氧化物與As(V)反應之錳溶出比較 100
圖4-44 Pyrolusite錳氧化物與As(III)氧化/吸附之動力曲線圖 102
圖4-45 Birnessite錳氧化物與As(III)氧化/吸附之動力曲線圖 102
圖4-46 Todorokite錳氧化物與As(III)氧化/吸附之動力曲線圖 103
王明光(2000),「土壤環境礦物學」,藝軒出版社,台北。
李書旗(2006),以超重力旋轉填充床吸附去除水體中農藥之研究,東海大學環境科學與工程學系研究所碩士論文。
朱銘華(1993),「儀器分析」,北京高等教育。
阮國棟(1986),“砷之污染特性及處理技術”,工業污染防治,第五卷,第二期,156-165。
吳榮宗(1992),「工業觸媒概論」,國興出版社,新竹。
吳錦昆(1999),“氧化鋁吸附地下水中砷之研究”,成功大學環境工程學系碩士論文。
陳見財(1999),利用電化學法處理工業廢水之可行性探討與評估,土木技術,第二卷,第十二期,140-145。
陳淑芬(1998),界面電位對纖維可染性之影響,國立台灣科技大學纖維及高分子工程技術研究所碩士論文。
黃富昌(2004),土壤結構及化性對有機污染物吸/脫附特性之研究,國立中央大學環境工程研究所博士論文。
廖旭茂(1995),“臺灣環境中無機砷物種分析之研究”,國立台灣大學海洋研究所碩士論文。
劉鎮宗(1995),302 期,134-140,砷與生態環境的關係,科學月刊。
Arienzo M., Adamo P., Chiarenzeli J., Bianco M.R., and Martino A.d., (2002) “Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation,” Chemosphere, 48, 1009-1018.
Bednar A.J., Garbarini J.R., Ranville J.K., and Wildeman T.R., (2002) “Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples.” Environ. Sci. Technol., 36, 2213-2218.
Chakravarty S., Dureja V., Bhattacharyya G., Maity S., and Bhattacharjee S., (2002) “Removal of arsenic from groundwater using low cost ferruginous manganese ore.” Wat. Res., 36, 625-632.
Chen S.L., Dzeng S.R., and Yang M.H., (1994)“Arsenic species in groundwater of the blackfoot disease area , Taiwan” Environ. Sci. Technol., 28, 877-881.
Chen Y.N., Li- Chai Y., and Shu Y.D., (2008)“Study of arsenic(V) adsorption on bone char from aqueous solution. Journal of Hazardous Materials,” 160, 168-172.
Ching S., Krukowska K. S., and Suib S. L., (1999) ” A new synthetic route to todorokite-type manganese oxides,” Inorganica Chimica Acta, 294, 123-132.
Deschamps E., Ciminelli V.S.T., and Holl W.H., (2005)“Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample,” Wat. Res., 39, 5212-5220.
DeMarco M.J., SenGupta A.K., and Greenleaf J.E., (2003) “Arsenic removal using a polymeric/inorganic hybrid sorbent,” Water Res., 37, 164-176.
Driehaus W., Seith R., and Jekel M., (1995) “ Oxidation of arsenate(III) with manganese oxides in water treatment,” Wat. Res., 29(1), 297-305.
Edwards M., (1994) “Chemistry of arsenic removal during coagulation and Fe-Mn oxidation,” JAWWA, 86, 64-78.
Ferguson M.A., Hoffmann M.R., and Hering J.G., (2005) “TiO2-photo-catalyzed As(III) oxidation in aqueous suspensions: reaction kinetics and effects of adsorption,” Environ Sci Technol, 39, 1880-1886.
Gomes J.A.G., Daida P., Kesmez M., Weir M., Moreno H., Parga J.R., Irwin G., Mc Whinney H., Grady T., Peterson E., and Cocke D.L., (2007)“Arsenic Removal by electrocoagulation using combined Al-Fe electrode system and characterization of products,”Journal of Hazardous Materials, B139, 220-231.
Guo H.M., Stuben D., Berner Z., and Yu Q.C., (2009)“Characteristics of arsenic adsorption from aqueous solution:Effect of arsenic species and natural adsorbents,” Applied Geochemistry, 24, 657-663
Healy T. W., Herring A. P., and Fuerstenau D. W., (1966) “The Effect of Crystal Structure on The Surface Properties of A Series of Manganese Dioxides,” Colloid Interface Sci, 21, 435-444.
Holt P. K., Barton G. W., Wark M., C. and Mitchell A.,(2002)“A quantitative comparison between chemical dosing and electrocoagulation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211, 233-248.
Hsu K.H., Froines J.R., and Chen C.J., (1997) “Studies of arsenic ingestion from drinking water in northeastern Taiwan: chemical speciation and urinary metabolites,” In : Abernathy, C. O., Calderon RL, Chappell WR (Eds.), Aesenic Exposure and health Effects. Chapman Hall, London, pp. 190-209.
Hug S.J., Canonica L., Wegelin M., Gechter D., and Von Gunten U., (2001) “Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters,” Environ. Sci. Technol., 35, 2114-2121.
Katsoyiannis I.A., and Zouboulis A.I., (2002) “Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials,” Water Res, 36, 5141-5155.
Kuo T.L., (1968) “Arsenic content of artesian well water in endemic area of chronic arsenic poisoning,” Rep. Inst. Pathol. National Taiwan Univ., 20, 7-13.
Lakshmipathiraj P., Narasimhan B.R.V., Prabhakar S., and Raju G.B., (2006) “Adsorption studies of arsenic on Mn-substituted iron oxyhydroxide,” Journal of Colloid and Interface Science, 304, 317-322.
Lakshmipathiraj P., Narasimhan B.R.V., Prabhakar S., and Raju G.B., (2006) “Adsorption of arsenate on synthetic goethite from aqueous solutions,” J. Hazard. Mater., 136, 281-287.
Lee H., and Choi W., (2002) “Photocatalytic oxidation of arsenic in TiO2 suspension: kinetics and mechanism,”Environ Sci Technol 33, 3872-3878.
Lee Y., Um J.H., and Yoon J., (2003) “Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic (V) by iron(III) coagulation," Environ Sci Technol, 37, 5750-5756.
Lenoble V., Lsclautre C., Serpaud B., Deluchat V., Bollinger J.C., (2004) “As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin,” Science of the Total Environment, 326, 197-207.
Liu J., Cai J., Son Y.C., Gao Q., Suib S.L., and Aindow M., (2002)“Magnesium Manganese Oxide Nanoribbons:Synthesis, Characterization, and Catalytic Application,” The Journal of Physical Chemistry B, 106(38), 9761-9768.
Liu C.W., Lin K.H., and Kuo Y.M., (2003) “Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan,” The Science of the Total Environment, 313, 77-89.
Lorenzen L., Van Deventer J.S.J., and Landi W.M., (1995) “Factors affecting the mechanism of the adsorption of arsenic species on activated carbon,” Minerals Engineering, 8(4-5), 557-569.
Manning B., Hunt M.L., Amrhein C., and Yarmoff J., (2002) “Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products,” Environ Sci Technol, 36, 5455-5461.
Manning B.A., Fendorf S.E., Bostick B., and Suarez D.L., (2002) “Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite,” Environ. Sci. Technol., 36, 976-981.
Matocha C.J., Sparks D.L., Amonette J.E., and Kukkadapu R.K., (2001) “Kinetics and mechanism of birnessite reduction by catechol,” Soil Sci. Soc. Am. J., 65, 58-66.
Matsunaga H.T., Yokoyama R.J.E., and Bolto B.A., (1996) “Adsorption characteristics of arsenic(III) and arsenic(V) on iron(III)-loaded chelaing resin having lysine-N, N-diacetic acid moiety,” Reactive & Functional Polymers, 29(3), 167-174.
Mckenzie, R.M., (1989)“Manganese oxides and hydroxides.In J.B.Dixon and S.B.Weed(ed.)Minerals in soil environments.Published by Soil,” Sci.Soc.Am.,Madison,WI., 9, 439-465.
Meharg A.A., and Maziburrahman M.D., (2002) “Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption,” Environ. Sci. Technol., 37, 229-234.
Meng X., Korfiatis G.P., Bang S., and Bang K.W., (2002) “Combined effects of anions on arsenic removal by iron hydroxides,” Toxicology Letters, 133, 103-111.
Nartey V.K., Binder L., and Huber A., (2000) “Production and characterisation of titanium doped electrolytic manganese dioxide for use in rechargeable alkaline zinc/manganese dioxide batteries,” Journal of Power Sources, 87(1-2), 205-211.
Nesbitt H.W., Canning G.W., and Bancroft G.M., (1998) “XPS study of reductive dissolution of 7 Å birnessite by H3AsO3 with constraints on reaction mechanism,” Geochim. Cosmochim. Acta., 62, 2097-2110.
Nico P.S., and Zasoski R.J., (2000) “Importance of Mn(III) availability on the rate of Cr(III) oxidation on -MnO2,“ Environ. Sci. Technol., 34, 3363-3367.
Oscarson D.W., Huamg P.M., Liaw W.K., and Hammer U.T., (1983) “Kinetics of oxidation of arsenite by various manganese dioxides,” Soil Sci. Soc. Am. J., 47, 644-648.
Ouvrard S., Simonnot M., and Sardin M., (2002) “Reactive behavior of natural manganese oxides toward the adsorption of phosphate and arsenate,” Ind. Eng. Chem. Res., 41, 2785-2791.
Perez-Benito J.F., and Arias C., (1992a)“A kinetic-study of the reaction between soluble (colloidal) manganese-dioxide and formic-acid,” Journal of colloid and interface science., 149, 92-97.
Perez-Benito J.F., and Arias C., (1992b)“Occurrence of colloidal manganese-dioxide in permanganate reactions,” Journal of colloid and interface science, 152, 70-84.
Pettine M., Campanella L., and Millero F.J., (1999) “Arsenite oxidation by H2O2 in aqueous solution,” Geochin. Cosmochim. Acta., 63, 2727-2735.
Power L.E., Arai Y., and Sparks D.L., (2005) “Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface,” Environ. Sci. Technol., 39, 181-187.
Redman A.D., Macalady D.L., and Ahmann D., (2002) “Natural organic matter affects arsenic speciation and sorption onto Hematite,” Environ. Sci. Technol., 36, 2889-2896.
Roberts L.C., Hug S.J., Ruettimann T., Billah M.M., Khan A.W., and Rahman M.T., (2004) “Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations,” Environ. Sci. Technol., 38, 307-315.
Smedley P. L., and Kinniburgh D. G., (2002)“A review of the source, behaviour anddistribution of arsenic in natural waters,” Applied Geochemistry, 17, 517–568.
Stumm W., Morgan J. J., (1981) “Aquatic Chemistry” John Wiley Sons Inc, New York.
Tani Y., Miyata N., Ohashi M., Ohnuki T., Seyama H., Iwahori K, and Soma M., (2004) “Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2,” Environ. Sci. Technol., 38, 6618-6624.
Tuutijarvi T., Lu J., Sillanpaa M., and Chen G., (2009)“As(V) adsorption on maghemite nanoparticles,” Journal of Hazardous Materials, 166, 1415-1420.
Violante A., Ricciardella M., Gaudio S.D., and Pigna M., (2006) “Coprecipitation of arsenate with metal oxides: Nature, mineralogy, and reactivity of aluminum precipitates,” Environ. Sci. Technol., 40, 4961-4967.
Xiao H.G., Tingzhi S., and Jianmin W., (2009) “Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model,” Journal of Hazardous Materials.,166, 39-45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔